A method for measurement of 36Ar without H35Cl interference

被引:7
|
作者
Saxton, J. M. [1 ]
机构
[1] Nu Instruments Ltd, Unit 74, Wrexham LL13 9XS, Wales
关键词
Mass spectrometry; Noble gas; 40Ar/39Ar dating;
D O I
10.1016/j.chemgeo.2015.05.017
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Most noble gas analyses are made in static mode when instrument volume is minimized to maintain adequate sensitivity. This makes the building of large instruments to obtain high resolving power impracticable. A method is presented which makes improved use of the available resolving power to remove isobaric interferences, which may be used on multicollector instruments. By arranging that the target mass position on a minor isotope (e.g. Ar-36), from which the interference must be removed, coincides with the approximately 50% point on the side of a major isotope (e.g. 40Ar), it is possible both to set the mass accurately and to verify the mass position and stability during measurements. The peak top of the major isotope is measured in a separate mass step. Calibration measurements are necessary, using different relative amounts of target/interference, to assess residual tailing to the measurement position and also the relative efficiency at the extreme edge of the target peak. The method is demonstrated by using it to obtain Ar-36 measurements free of (HCl)-Cl-35. With samples containing 4 x 10(-15) to 3 x 10(-14) mol of 40Ar, Ar-36/40Ar was measured, without HCl interference, to a 1 sigma precision of 0.5%, only slightly worse than counting statistics. This is potentially useful for 40Ar/39Ar dating, where Ar-36 is used to correct for trapped air, and may be particularly significant for smaller or younger samples. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:112 / 117
页数:6
相关论文
共 50 条
  • [41] LIFETIME MEASUREMENTS IN AR-36 AND CL-36 USING RECOIL DISTANCE METHOD
    NOLAN, PJ
    BUTLER, PA
    CARR, PE
    GADEKEN, LL
    JAMES, AN
    SHARPEYS.JF
    VIGGARS, DA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1973, 6 (04): : L37 - L40
  • [42] STRUCTURE OF AR-36 AND AR-38 VIA (HE-3,D) REACTION ON CL-35 AND CL-37
    MOINESTER, MA
    ALFORD, WP
    NUCLEAR PHYSICS A, 1970, A145 (01) : 143 - +
  • [43] INVESTIGATION OF AR-36 WITH CL-35(P,GAMMA)AR-36 REACTION .1. BRANCHING RATIOS, EXCITATION-ENERGIES AND LIFETIMES OF AR-36 LEVELS
    HOKKEN, GA
    HENDRICX, JA
    DEKOGEL, J
    NUCLEAR PHYSICS A, 1972, A194 (03) : 481 - &
  • [44] ROTATIONAL SPECTRA AND STRUCTURES OF THE AR2-H35CL/37CL TRIMERS
    KLOTS, TD
    CHUANG, C
    RUOFF, RS
    EMILSSON, T
    GUTOWSKY, HS
    JOURNAL OF CHEMICAL PHYSICS, 1987, 86 (10): : 5315 - 5322
  • [45] THE VIBRATION-ROTATION BANDS OF THE HYDROGEN HALIDES HF, H35CL, H37CL, H79BR, H81BR AND H127I
    NAUDE, SM
    VERLEGER, H
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION B, 1950, 63 (365): : 375 - 375
  • [46] TEMPERATURE-DEPENDENCE OF RARE-GAS BROADENING AND SHIFTING OF 1ST HARMONIC LINES OF H35CL
    HOUDEAU, JP
    BOULET, C
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1981, 26 (06): : 503 - 514
  • [47] Accelerator mass spectrometry measurement of the reaction 35Cl(n, γ)36Cl at keV energies
    Pavetich, Stefan
    Wallner, Anton
    Martschini, Martin
    Akhmadaliev, Shavkat
    Dillmann, Iris
    Fifield, Keith
    Halfon, Shlomi
    Heftrich, Tanja
    Kaeppeler, Franz
    Lederer-Woods, Claudia
    Merchel, Silke
    Paul, Michael
    Reifarth, Rene
    Rugel, Georg
    Steier, Peter
    Tessler, Moshe
    Tims, Stephen
    Weigand, Mario
    Weissman, Leo
    PHYSICAL REVIEW C, 2019, 99 (01)
  • [48] 结合机器学习算法提高从头算方法对HF/HBr/H35Cl/Na35Cl振动能谱的预测性能
    杨章章
    刘丽
    万致涛
    付佳
    樊群超
    谢锋
    张燚
    马杰
    物理学报, 2023, 72 (07) : 178 - 186
  • [49] Dating collisional events: 36Cl-36Ar exposure ages of H-chondritic metals
    Graf, T
    Caffee, MW
    Marti, K
    Nishiizumi, K
    Ponganis, KV
    ICARUS, 2001, 150 (01) : 181 - 188
  • [50] Reorientation-effect measurement of the ⟨21+∥(E)over-cap2∥21+⟩ matrix element in 36Ar
    Orce, J. N.
    Montes, E. J. Martin
    Abrahams, K. J.
    Ngwetsheni, C.
    Brown, B. A.
    Raju, M. Kumar
    Mehl, C., V
    Mokgolobotho, M. J.
    Akakpo, E. H.
    Mavela, D. L.
    Adsley, P.
    Bark, R. A.
    Bernier, N.
    Bucher, T. D.
    Erasmus, N. R.
    Dinoko, T. S.
    Jones, P. M.
    Kheswa, N. Y.
    Khumalo, N. A.
    Lawrie, E. A.
    Lawrie, J. J.
    Lesch, B. L.
    Majola, S. N. T.
    Ntshangase, S. S.
    Papka, P.
    Pesudo, V
    Rebeiro, B.
    Shirinda, O.
    Wiedeking, M.
    Yahia-Cherif, W.
    PHYSICAL REVIEW C, 2021, 104 (06)