Operator monotone functions and Lowner functions of several variables

被引:43
|
作者
Agler, Jim [1 ]
McCarthy, John E. [2 ,3 ]
Young, N. J. [4 ,5 ]
机构
[1] Univ Calif San Diego, La Jolla, CA USA
[2] Washington Univ, St Louis, MO USA
[3] Trinity Coll Dublin, Dublin, Ireland
[4] Univ Leeds, Leeds, W Yorkshire, England
[5] Newcastle Univ, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
NEVANLINNA-PICK INTERPOLATION; BOUNDARY; THEOREM;
D O I
10.4007/annals.2012.176.3.7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove generalizations of Lowner's results on matrix monotone functions to several variables. We give a characterization of when a function of d variables is locally monotone on d-tuples of commuting self-adjoint n-by-n matrices. We prove a generalization to several variables of Nevanlinna's theorem describing analytic functions that map the upper half-plane to itself and satisfy a growth condition. We use this to characterize all rational functions of two variables that are operator monotone.
引用
收藏
页码:1783 / 1826
页数:44
相关论文
共 50 条
  • [41] Functions of several variables
    Trif, Tiberiu
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2012, 57 (02): : 312 - 313
  • [42] To the Theory of Operator Monotone and Operator Convex Functions
    Dinh Trung Hoa
    Tikhonov, O. E.
    [J]. RUSSIAN MATHEMATICS, 2010, 54 (03) : 7 - 11
  • [43] Lowner's operator and spectral functions in euclidean Jordan algebras
    Sun, Defeng
    Sun, Jie
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2008, 33 (02) : 421 - 445
  • [44] CONTINUITY AND DIFFERENTIABILITY PROPERTIES OF MONOTONE REAL FUNCTIONS OF SEVERAL REAL VARIABLES.
    Chabrillac, Yves
    Crouzeix, P.-P.
    [J]. Mathematical Programming Study, 1983, : 1 - 16
  • [45] New characterizations of operator monotone functions
    Trung Hoa Dinh
    Dumitru, Raluca
    Franco, Jose A.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 546 : 169 - 186
  • [46] Operator monotone functions on accretive matrices
    Amir Ghasem Ghazanfari
    Somayeh Malekinejad
    [J]. Positivity, 2023, 27
  • [47] A normal family of operator monotone functions
    Moslehian, Mohammad Sal
    Najafi, Hamed
    Uchiyama, Mitsuru
    [J]. HOKKAIDO MATHEMATICAL JOURNAL, 2013, 42 (03) : 417 - 423
  • [48] Majorization and some operator monotone functions
    Uchiyama, Mitsuru
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (08) : 1867 - 1872
  • [49] Operator monotone functions on accretive matrices
    Ghazanfari, Amir Ghasem
    Malekinejad, Somayeh
    [J]. POSITIVITY, 2023, 27 (05)
  • [50] A unified approach to operator monotone functions
    Jiang, Tianpei
    Sendov, Hristo
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 541 : 185 - 210