Operator monotone functions and Lowner functions of several variables

被引:43
|
作者
Agler, Jim [1 ]
McCarthy, John E. [2 ,3 ]
Young, N. J. [4 ,5 ]
机构
[1] Univ Calif San Diego, La Jolla, CA USA
[2] Washington Univ, St Louis, MO USA
[3] Trinity Coll Dublin, Dublin, Ireland
[4] Univ Leeds, Leeds, W Yorkshire, England
[5] Newcastle Univ, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
NEVANLINNA-PICK INTERPOLATION; BOUNDARY; THEOREM;
D O I
10.4007/annals.2012.176.3.7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove generalizations of Lowner's results on matrix monotone functions to several variables. We give a characterization of when a function of d variables is locally monotone on d-tuples of commuting self-adjoint n-by-n matrices. We prove a generalization to several variables of Nevanlinna's theorem describing analytic functions that map the upper half-plane to itself and satisfy a growth condition. We use this to characterize all rational functions of two variables that are operator monotone.
引用
收藏
页码:1783 / 1826
页数:44
相关论文
共 50 条