Properties of liquid clusters in large-scale molecular dynamics nucleation simulations

被引:35
|
作者
Angelil, Raymond [1 ]
Diemand, Juerg [1 ]
Tanaka, Kyoko K. [2 ]
Tanaka, Hidekazu [2 ]
机构
[1] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland
[2] Hokkaido Univ, Inst Low Temp Sci, Sapporo, Hokkaido 0600819, Japan
来源
JOURNAL OF CHEMICAL PHYSICS | 2014年 / 140卷 / 07期
基金
瑞士国家科学基金会;
关键词
HOMOGENEOUS NUCLEATION; COMPUTER-SIMULATION; INTERFACE; PLANAR;
D O I
10.1063/1.4865256
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have performed large-scale Lennard-Jones molecular dynamics simulations of homogeneous vapor-to-liquid nucleation, with 10(9) atoms. This large number allows us to resolve extremely low nucleation rates, and also provides excellent statistics for cluster properties over a wide range of cluster sizes. The nucleation rates, cluster growth rates, and size distributions are presented in Diemand et al. [J. Chem. Phys. 139, 74309 (2013)], while this paper analyses the properties of the clusters. We explore the cluster temperatures, density profiles, potential energies, and shapes. A thorough understanding of the properties of the clusters is crucial to the formulation of nucleation models. Significant latent heat is retained by stable clusters, by as much as Delta kT = 0.1 epsilon for clusters with size i = 100. We find that the clusters deviate remarkably from spherical-with ellipsoidal axis ratios for critical cluster sizes typically within b/c = 0.7 +/- 0.05 and a/c = 0.5 +/- 0.05. We examine cluster spin angular momentum, and find that it plays a negligible role in the cluster dynamics. The interfaces of large, stable clusters are thinner than planar equilibrium interfaces by 10%-30%. At the critical cluster size, the cluster central densities are between 5% and 30% lower than the bulk liquid expectations. These lower densities imply larger-than-expected surface areas, which increase the energy cost to form a surface, which lowers nucleation rates. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] The alignment of clusters using large-scale simulations
    Onuora, LI
    Thomas, PA
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2000, 319 (02) : 614 - 618
  • [22] Large-scale molecular dynamics simulations of dense plasmas: The Cimarron Project
    Graziani, Frank R.
    Batista, Victor S.
    Benedict, Lorin X.
    Castor, John I.
    Chen, Hui
    Chen, Sophia N.
    Fichtl, Chris A.
    Glosli, James N.
    Grabowski, Paul E.
    Graf, Alexander T.
    Hau-Riege, Stefan P.
    Hazi, Andrew U.
    Khairallah, Saad A.
    Krauss, Liam
    Langdon, A. Bruce
    London, Richard A.
    Markmann, Andreas
    Murillo, Michael S.
    Richards, David F.
    Scott, Howard A.
    Shepherd, Ronnie
    Stanton, Liam G.
    Streitz, Fred H.
    Surh, Michael P.
    Weisheit, Jon C.
    Whitley, Heather D.
    HIGH ENERGY DENSITY PHYSICS, 2012, 8 (01) : 105 - 131
  • [23] Large-scale molecular dynamics simulations of self-assembling systems
    Klein, Michael L.
    Shinoda, Wataru
    SCIENCE, 2008, 321 (5890) : 798 - 800
  • [24] Pyrolysis simulations of Fugu coal by large-scale ReaxFF molecular dynamics
    Gao, Mingjie
    Li, Xiaoxia
    Guo, Li
    FUEL PROCESSING TECHNOLOGY, 2018, 178 : 197 - 205
  • [25] Scalable in situ analysis for large-scale molecular dynamics simulations on supercomputers
    Malakar, Preeti
    Vishwanath, Venkatram
    Knight, Christopher
    Munson, Todd
    Papka, Michael
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [27] Angular dependent potential for α-boron and large-scale molecular dynamics simulations
    Pokatashkin, P.
    Kuksin, A.
    Yanilkin, A.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2015, 23 (04)
  • [28] Controlling the data glut in large-scale molecular-dynamics simulations
    Beazley, DM
    Lomdahl, PS
    COMPUTERS IN PHYSICS, 1997, 11 (03): : 230 - 238
  • [29] LARGE-SCALE MOLECULAR-DYNAMICS SIMULATIONS OF PLASTIC-DEFORMATION
    HOLIAN, BL
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 1994, 129 (1-2): : 41 - 44
  • [30] Large-scale molecular dynamics simulations of interstitial defect diffusion in silicon
    Richie, DA
    Kim, J
    Hennig, R
    Hazzard, K
    Barr, S
    Wilkins, JW
    MODELING AND NUMERICAL SIMULATION OF MATERIALS BEHAVIOR AND EVOLUTION, 2002, 731 : 141 - 145