Spectral Engineering With CMOS Compatible SOI Photonic Molecules

被引:21
|
作者
Barea, Luis A. M. [1 ]
Vallini, Felipe [1 ]
de Rezende, Guilherme F. M. [1 ]
Frateschi, Newton C. [1 ]
机构
[1] Univ Estadual Campinas, Univ Campinas, GlebWataghin Phys Inst, Dept Appl Phys,Device Res Lab, BR-13083859 Campinas, SP, Brazil
来源
IEEE PHOTONICS JOURNAL | 2013年 / 5卷 / 06期
基金
巴西圣保罗研究基金会;
关键词
Silicon nanophotonics; waveguide devices; RING-RESONATOR; MICRORING RESONATORS; OPTICAL BUFFERS; WAVE-GUIDES; SLOW-LIGHT; SILICON; ENHANCEMENT; MODULATION; WIRES; LASER;
D O I
10.1109/JPHOT.2013.2289977
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Photonic systems based on microring resonators have a fundamental constraint given by the strict relationship among free spectral range, total quality factor QT, and resonator size, intrinsically making filter spacing, photonic lifetime, and footprint interdependent. Here, we break this paradigm employing CMOS-compatible silicon-on-insulator photonic molecules based on coupled multiple inner ring resonators. The resonance wavelengths and their respective linewidths are controlled by the hybridization of the quasiorthogonal photonic states. We demonstrate photonic molecules with doublet and triplet resonances with spectral splitting only achievable with single-ring orders of magnitude larger in footprint. In addition, this splitting is potentially controllable based on the coupling (bonds) between resonators. Finally, the spatial distribution of the hybrid states allows up to sevenfold QT enhancement.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] CMOS compatible multichannel mid -infrared photonic crystal sensor
    Zhou Yi
    Wang Lei
    Li Jun
    Yang Xue-Lei
    Gan Feng-Yuan
    Zhao Ying-Xuan
    Qiu Chao
    Li Wei
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2020, 39 (03) : 279 - 283
  • [22] Additive 3D photonic integration that is CMOS compatible
    Grabulosa, Adria
    Moughames, Johnny
    Porte, Xavier
    Kadic, Muamer
    Brunner, Daniel
    NANOTECHNOLOGY, 2023, 34 (32)
  • [23] Robust CMOS compatible photonic crystal nanocavity and DEMUX filter
    Tanabe, Takasumi
    Ooka, Yuta
    Daud, Nurul Ashikin Binti
    Tetsumoto, Tomohiro
    2017 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2017,
  • [24] Proton radiation effects in vertical SiGeHBTs fabricated on CMOS-compatible SOI
    Chen, TB
    Sutton, AK
    Bellini, M
    Haugerud, BM
    Comeau, JP
    Liang, QQ
    Cressler, JD
    Cai, J
    Ning, TH
    Marshall, PW
    Marshall, CJ
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2005, 52 (06) : 2353 - 2357
  • [25] CMOS compatible 3-D flow and thermal sensors in SOI technology
    Andre, N
    Iker, F
    Jorez, S
    Raskin, JP
    2005 IEEE SENSORS, VOLS 1 AND 2, 2005, : 553 - 556
  • [26] A post-CMOS compatible smart yarn technology based on SOI wafers
    Tu, Hongen
    Chen, Xiaoyu
    Feng, Xiaoce
    Xu, Yong
    SENSORS AND ACTUATORS A-PHYSICAL, 2015, 233 : 397 - 404
  • [27] Low breakdown voltage and CMOS compatible avalanche photodiode based on SOI substrate
    Xu, Hang
    Feng, Tianyang
    Guo, Jianbin
    Yang, Yafen
    Zhang, David Wei
    OPTICS LETTERS, 2024, 49 (15) : 4310 - 4313
  • [28] CMOS-Foundry Compatible, Broadband, and Compact Routing of Multimode SOI Waveguides
    Novick, Asher
    Jang, Kaylx
    Rizzo, Anthony
    James, Aneek
    Dave, Utsav
    Lipson, Michal
    Bergman, Keren
    2023 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION, OFC, 2023,
  • [29] CMOS compatible SOI nanowire FET with charged dielectric for temperature sensing applications
    Shimanovich, Klimentiy
    Mutsafi, Zoe
    Roizin, Yakov
    Rosenwaks, Yossi
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (06)
  • [30] CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology
    Dainesi, P
    Küng, A
    Chabloz, M
    Lagos, A
    Flückiger, P
    Ionescu, A
    Fazan, P
    Declerq, M
    Renaud, P
    Robert, P
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2000, 12 (06) : 660 - 662