A novel approach for distance-based semi-supervised clustering using functional link neural network

被引:10
|
作者
Chandra, B. [1 ]
Gupta, Manish [1 ]
机构
[1] Indian Inst Technol, Dept Math, Delhi 110016, India
关键词
Clustering; Semi-supervised clustering; Neural networks; Orthonormal basis function; Parametric Minkowski model; KERNEL; PREDICTION; ALGORITHM; NET;
D O I
10.1007/s00500-012-0912-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semi-supervised clustering is gaining importance these days since neither supervised nor unsupervised learning methods in a stand-alone manner provide satisfactory results. Existing semi-supervised clustering techniques are mostly based on pair-wise constraints, which could be misleading. These semi-supervised clustering algorithms also fail to address the problem of dealing with attributes having different weights. In most of the real-life applications, all attributes do not have equal importance and hence same weights cannot be assigned for each attribute. In this paper, a novel distance-based semi-supervised clustering algorithm has been proposed, which uses functional link neural network (FLNN) for finding weights for attributes with small amount of labeled data for further use in parametric Minkowski's model for clustering. In FLNN, the nonlinearity is captured by enhancing the input using orthonormal basis functions. The effectiveness of the approach has been illustrated over a number of datasets taken from UCI machine learning repository. Comparative performance evaluation demonstrates that the proposed approach outperforms the existing semi-supervised clustering algorithms. The proposed approach has also been successfully used to cluster the crime locations and to find crime hot spots in India on the data provided by National Crime Records Bureau (NCRB).
引用
收藏
页码:369 / 379
页数:11
相关论文
共 50 条
  • [31] TESC: An approach to TExt classification using Semi-supervised Clustering
    Zhang, Wen
    Tang, Xijin
    Yoshida, Taketoshi
    KNOWLEDGE-BASED SYSTEMS, 2015, 75 : 152 - 160
  • [32] Categorization Using Semi-Supervised Clustering
    Hu, Jianying
    Singh, Moninder
    Mojsilovic, Aleksandra
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3666 - 3669
  • [33] A Graph-Based Projection Approach for Semi-supervised Clustering
    Yoshida, Tetsuya
    Okatani, Kazuhiro
    KNOWLEDGE MANAGEMENT AND ACQUISITION FOR SMART SYSTEMS AND SERVICES, 2010, 6232 : 1 - 13
  • [34] A supervised method to enhance distance-based neural network clustering performance by discovering perfect representative neurons
    Qiang Fu
    Yuefeng Li
    Mubarak Albathan
    Granular Computing, 2023, 8 (5) : 1051 - 1065
  • [35] A supervised method to enhance distance-based neural network clustering performance by discovering perfect representative neurons
    Fu, Qiang
    Li, Yuefeng
    Albathan, Mubarak
    GRANULAR COMPUTING, 2023, 8 (05) : 1051 - 1065
  • [36] Semi-supervised fuzzy clustering: A kernel-based approach
    Zhang, Huaxiang
    Lu, Jing
    KNOWLEDGE-BASED SYSTEMS, 2009, 22 (06) : 477 - 481
  • [37] An online semi-supervised clustering algorithm based on a self-organizing incremental neural network
    Kamiya, Youki
    Ishii, Toshiaki
    Furao, Shen
    Hasegawa, Osamu
    2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 1061 - +
  • [38] A Novel Network Intrusion Detection System Based on Semi-Supervised Approach for IoT
    Bhavani, A. Durga
    Mangla, Neha
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (04) : 207 - 216
  • [39] A Novel Initialization Method for Semi-supervised Clustering
    Dang, Yanzhong
    Xuan, Zhaoguo
    Rong, Lili
    Liu, Ming
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, 2010, 6291 : 317 - 328
  • [40] A genetic algorithm approach for semi-supervised clustering
    Demiriz, Ayhan
    Bennett, Kristin P.
    Embrechts, Mark J.
    International Journal of Smart Engineering System Design, 2002, 4 (01): : 21 - 30