Indispensable finite time corrections for Fokker-Planck equations from time series data

被引:114
|
作者
Ragwitz, M [1 ]
Kantz, H [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
关键词
D O I
10.1103/PhysRevLett.87.254501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The reconstruction of Fokker-Planck equations from observed time series data suffers strongly from finite sampling rates. We show that previously published results are degraded considerably by such effects. We present correction terms which yield a robust estimation of the diffusion terms, together with a novel method for one-dimensional problems. We apply these methods to time series data of local surface wind velocities, where the dependence of the diffusion constant on the state variable shows a different behavior than previously suggested.
引用
收藏
页码:254501 / 1
页数:4
相关论文
共 50 条
  • [21] Invariants of Fokker-Planck equations
    Abe, Sumiyoshi
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (03): : 529 - 532
  • [22] Deformed fokker-planck equations
    Ho, Choon-Lin
    Sasaki, Ryu
    PROGRESS OF THEORETICAL PHYSICS, 2007, 118 (04): : 667 - 674
  • [23] GEOMETRIC FOKKER-PLANCK EQUATIONS
    Lebeau, Gilles
    PORTUGALIAE MATHEMATICA, 2005, 62 (04) : 469 - 530
  • [24] THE TIME-LOCAL FOKKER-PLANCK EQUATION
    RODGER, PM
    SCEATS, MG
    JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (04): : 2526 - 2535
  • [25] GENERALIZED CONTINUOUS TIME RANDOM WALKS, MASTER EQUATIONS, AND FRACTIONAL FOKKER-PLANCK EQUATIONS
    Angstmann, C. N.
    Donnelly, I. C.
    Henry, B. I.
    Langlands, T. A. M.
    Straka, P.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2015, 75 (04) : 1445 - 1468
  • [26] Exact time-dependent solutions of the Renyi Fokker-Planck equation and the Fokker-Planck equations related to the entropies proposed by Sharma and Mittal
    Frank, TD
    Daffertshofer, A
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 285 (3-4) : 351 - 366
  • [27] DERIVATION OF SMOLUCHOWSKI EQUATIONS WITH CORRECTIONS FOR FOKKER-PLANCK AND BGK COLLISION MODELS
    SKINNER, JL
    WOLYNES, PG
    PHYSICA A, 1979, 96 (03): : 561 - 572
  • [28] φ-Entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations
    Dolbeault, Jean
    Li, Xingyu
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (13): : 2637 - 2666
  • [29] Artificial neural network solver for time-dependent Fokker-Planck equations
    Li, Yao
    Meredith, Caleb
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 457
  • [30] Large-time behavior in non-symmetric Fokker-Planck equations
    Achleitner, Franz
    Arnold, Anton
    Stuerzer, Dominik
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2015, 6 (01): : 1 - 68