Parametric and nonparametric bootstrap methods for general MANOVA

被引:73
|
作者
Konietschke, Frank [1 ]
Bathke, Arne C. [2 ,3 ]
Harrar, Solomon W. [3 ]
Pauly, Markus [4 ]
机构
[1] Univ Texas Dallas, Dept Math Sci, Richardson, TX 75080 USA
[2] Salzburg Univ, Fachbereich Math, A-5020 Salzburg, Austria
[3] Univ Kentucky, Dept Stat, Lexington, KY 40536 USA
[4] Univ Ulm, Inst Stat, D-89081 Ulm, Germany
关键词
ANOVA; Multivariate Behrens-Fisher problem; Multivariate data; Nonparametric bootstrap; Parametric bootstrap; Wald test; BEHRENS-FISHER PROBLEM; ONE-WAY MANOVA; PERMUTATION TESTS; FACTORIAL-DESIGNS; ROBUST; HETEROSCEDASTICITY; ARRAYS; SAMPLE;
D O I
10.1016/j.jmva.2015.05.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop parametric and nonparametric bootstrap methods for multi-factor multivariate data, without assuming normality, and allowing for covariance matrices that are heterogeneous between groups. The newly proposed, general procedure includes several situations as special cases, such as the multivariate Behrens Fisher problem, the multivariate one-way layout, as well as crossed and hierarchically nested two-way layouts. We derive the asymptotic distribution of the bootstrap tests for general factorial designs and evaluate their performance in an extensive comparative simulation study. For moderate sample sizes, the bootstrap approach provides an improvement to existing methods in particular for situations with nonnormal data and heterogeneous covariance matrices in unbalanced designs. For balanced designs, less computationally intensive alternatives based on approximate sampling distributions of multivariate tests can be recommended. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:291 / 301
页数:11
相关论文
共 50 条
  • [31] Nonparametric bootstrap prediction
    Fushiki, T
    Komaki, F
    Aihara, K
    BERNOULLI, 2005, 11 (02) : 293 - 307
  • [32] SMOOTH NONPARAMETRIC QUANTILE ESTIMATION UNDER CENSORING - SIMULATIONS AND BOOTSTRAP METHODS
    PADGETT, WJ
    THOMBS, LA
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1986, 15 (04) : 1003 - 1025
  • [33] Comparing Parametric and Nonparametric Methods for Heterogeneous Treatment Effects
    Kim, Jee-Seon
    Liao, Xiangyi
    Loh, Wen Wei
    QUANTITATIVE PSYCHOLOGY, 2023, 422 : 31 - 39
  • [34] Evaluation and Analysis of few Parametric and Nonparametric Classification Methods
    Sonawane, M. S.
    Dhawale, C. A.
    2016 SECOND INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE & COMMUNICATION TECHNOLOGY (CICT), 2016, : 14 - 21
  • [35] Methods for assessing erythema: A critique of parametric and nonparametric techniques
    Doshi, A
    Zaheer, A
    Stiller, MJ
    INTERNATIONAL JOURNAL OF DERMATOLOGY, 1997, 36 (05) : 334 - 337
  • [36] Parametric and Nonparametric Methods for SAR Patch Scene Categorization
    Gleich, Dusan
    Singh, Jagmal
    Planinsic, Peter
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (04) : 1623 - 1634
  • [37] Comparison of parametric, semiparametric and nonparametric methods in genomic evaluation
    Hamid Sahebalam
    Mohsen Gholizadeh
    Hasan Hafezian
    Ayoub Farhadi
    Journal of Genetics, 2019, 98
  • [38] Parametric and nonparametric methods hint dark energy evolution
    Bernardo, Reginald Christian
    Grandon, Daniela
    Said, Jackson Levi
    Cardenas, Victor H.
    PHYSICS OF THE DARK UNIVERSE, 2022, 36
  • [39] Comparison of parametric, semiparametric and nonparametric methods in genomic evaluation
    Sahebalam, Hamid
    Gholizadeh, Mohsen
    Hafezian, Hasan
    Farhadi, Ayoub
    JOURNAL OF GENETICS, 2019, 98 (04)
  • [40] Comparison of parametric and nonparametric methods to map oligogenes by linkage
    Lio, P
    Morton, NE
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (10) : 5344 - 5348