First-order swap structures semantics for some logics of formal inconsistency

被引:4
|
作者
Coniglio, Marcelo E. [1 ,2 ]
Figallo-Orellano, Aldo [2 ,3 ]
Golzio, Ana C. [4 ]
机构
[1] Univ Estadual Campinas, Inst Philosophy & Humanities, BR-13083896 Campinas, SP, Brazil
[2] Univ Estadual Campinas, Ctr Log Epistemol & Hist Sci, BR-13083896 Campinas, SP, Brazil
[3] Univ Nacl Sur, Dept Matemat, Bahia Blanca, Buenos Aires, Argentina
[4] Sao Paulo State Univ, Fac Philosophy & Sci, Marilia Campus, BR-17525900 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
First-order logics; logics of formal inconsistency; paraconsistent logics; swap structures; non-deterministic matrices; twist structures; NONDETERMINISTIC SEMANTICS; COMPLETENESS; THEOREMS;
D O I
10.1093/logcom/exaa027
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The logics of formal inconsistency (LFIs, for short) are paraconsistent logics (i.e. logics containing contradictory but nontrivial theories) having a consistency connective which allows to recover the ex falso quodlibet principle in a controlled way. The aim of this paper is considering a novel semantical approach to first-order LFIs based on Tarskian structures defined over swap structures, a special class of multialgebras. The proposed semantical framework generalizes previous approaches to quantified LFIs presented in the literature. The case of QmbC, the simpler quantified LFI expanding classical logic, will be analyzed in detail. An axiomatic extension of QmbC called QLFI1(o), is also studied, which is equivalent to the quantified version of da Costa and D'Ottaviano 3-valued logic J3. The semantical structures for this logic turn out to be Tarkian structures based on twist structures. The expansion of QmbC and QLFI1(o) with a standard equality predicate is also considered.
引用
收藏
页码:1257 / 1290
页数:34
相关论文
共 50 条
  • [41] ON THE SATISFIABILITY OF LOCAL FIRST-ORDER LOGICS WITH DATA
    Bollig, Benedikt
    Sangnier, Arnaud
    Stietel, Olivier
    LOGICAL METHODS IN COMPUTER SCIENCE, 2024, 20 (03)
  • [42] Enumerating teams in first-order team logics
    Haak, Anselm
    Meier, Arne
    Muller, Fabian
    Vollmer, Heribert
    ANNALS OF PURE AND APPLIED LOGIC, 2022, 173 (10)
  • [43] Decidable fragments of first-order modal logics
    Wolter, F
    Zakharyaschev, M
    JOURNAL OF SYMBOLIC LOGIC, 2001, 66 (03) : 1415 - 1438
  • [44] FIRST-ORDER AND TEMPORAL LOGICS FOR NESTED WORDS
    Alur, Rajeev
    Arenas, Marcelo
    Barcelo, Pablo
    Etessami, Kousha
    Immerman, Neil
    Libkin, Leonid
    LOGICAL METHODS IN COMPUTER SCIENCE, 2008, 4 (04)
  • [45] Fibered universal algebra for first-order logics
    Bloomfield, Colin
    Maruyama, Yoshihiro
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2024, 228 (02)
  • [46] Modal logics between propositional and first-order
    Fitting, M
    JOURNAL OF LOGIC AND COMPUTATION, 2002, 12 (06) : 1017 - 1026
  • [47] First-order logics over fixed domain
    Taylor, R. Gregory
    THEORIA-A SWEDISH JOURNAL OF PHILOSOPHY, 2022, 88 (03): : 584 - 606
  • [48] On natural deduction in first-order fixpoint logics
    Szalas, Andrzej
    Fundamenta Informaticae, 1996, 26 (01) : 81 - 94
  • [49] First-order resolution methods for modal logics
    1600, Springer Verlag (7797 LNCS):
  • [50] Decidable fragments of first-order temporal logics
    Hodkinson, I
    Wolter, F
    Zakharyaschev, M
    ANNALS OF PURE AND APPLIED LOGIC, 2000, 106 (1-3) : 85 - 134