Let R be a ring and Q be a quiver. We prove the first Finitistic Dimension Conjecture to be true for RQ, the path ring of Q over R, provided that R satisfies the conjecture. In fact, we prove that if the little and the big finitistic dimensions of R coincide and equal n < infinity, then this is also true for RQ and, both the little and the big finitistic dimensions of RQ equal n + 1 when Q is non-discrete and n when Q is discrete. We also prove that RQ is a quasi-Frobenius ring if and only if R is quasi-Frobenius and Q is discrete.
机构:
Univ Republica, Inst Matemat & Estadist Rafael Laguardia, Julio Herrera & Feissig 565, Montevideo, UruguayUniv Republica, Inst Matemat & Estadist Rafael Laguardia, Julio Herrera & Feissig 565, Montevideo, Uruguay
Bravo, Diego
Paquette, Charles
论文数: 0引用数: 0
h-index: 0
机构:
Royal Mil Coll Canada, Dept Math & Comp Sci, Kingston, ON K7K 7B4, CanadaUniv Republica, Inst Matemat & Estadist Rafael Laguardia, Julio Herrera & Feissig 565, Montevideo, Uruguay