Fabrication and characterization of YIG nanotubes

被引:9
|
作者
Zhang, X. M. [1 ,2 ]
Li, W. J. [1 ,2 ]
Irfan, M. [1 ,2 ]
Parajuli, S. [1 ,2 ]
Wei, J. W. [1 ,2 ,3 ]
Yan, Z. R. [1 ,2 ]
Wang, X. [1 ,2 ]
Ahmad, N. [4 ]
Feng, J. F. [1 ,2 ,3 ]
Yu, G. Q. [1 ,2 ,3 ]
Han, X. F. [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Univ Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
[4] Int Islamic Univ, FBAS, Dept Phys, Spintron Lab, Islamabad 44000, Pakistan
基金
中国国家自然科学基金;
关键词
YIG nanotubes; Sol-gel method; AAO templates; Superparamagnetic; FMR; IRON-GARNET YIG; MAGNETIC-PROPERTIES; SIZE DEPENDENCE; THIN-FILMS; WAVE;
D O I
10.1016/j.jmmm.2019.03.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have successfully synthesized Y3Fe5O12 (yttrium iron garnet, YIG) nanotubes (NTs) of different diameters using a conventional sol-gel method in anodized aluminum oxide (AAO) templates. An annealing process at 800 degrees C is performed to get a pure phase of YIG. The room-temperature magnetization measurements show that the coercivity decreases significantly as the diameter of nanotubes increases. The temperature dependence of magnetic moments in field-cooled (FC) and zero-field-cooled (ZFC) modes indicates that YIG NTs transform from ferromagnetic-like (FM-like) state to superparamagnetic (SPM) state when temperature decreases (in the region of 310 K-400 K). The Blocking temperature dramatically decreases as the size of YIG NTs reduces. In the FM-like state, the temperature-dependent coercivity in three different samples yields a 1/2 power law of the temperature. The temperature dependence of saturation magnetization in three different samples can be well fitted to Bloch's T-3/2 law. Characterization of ferromagnetic resonance (FMR) is conducted, which indicates the Gilbert damping parameter of YIG NTs is around 7-9 x 10(-3).
引用
下载
收藏
页码:358 / 363
页数:6
相关论文
共 50 条
  • [41] Fabrication and Characterization of the Composites Reinforced with Multi-Walled Carbon Nanotubes
    Her, Shiuh-Chuan
    Yeh, Shun-Wen
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (10) : 8110 - 8115
  • [42] Controllable Fabrication and Characterization of Si-coated Multiwalled Carbon Nanotubes
    Lu, Jing
    Zang, Jianbing
    Wang, Yanhui
    INTEGRATED FERROELECTRICS, 2013, 146 (01) : 22 - 28
  • [43] Template-directed synthesis of oxide nanotubes: Fabrication, characterization, and applications
    Bae, Changdeuck
    Yoo, Hyunjun
    Kim, Sihyeong
    Lee, Kyungeun
    Kim, Jiyoung
    Sung, Myung A.
    Shin, Hyunjung
    CHEMISTRY OF MATERIALS, 2008, 20 (03) : 756 - 767
  • [44] A Review on the Fabrication and Characterization of Titania Nanotubes Obtained via Electrochemical Anodization
    Batool, Syeda Ammara
    Maqbool, Muhammad Salman Salman
    Javed, Muhammad Awais
    Niaz, Akbar
    Rehman, Muhammad Atiq Ur
    SURFACES, 2022, 5 (04): : 456 - 480
  • [45] Fabrication and characterization of resonator using multi-wall carbon nanotubes
    Song, Jin-Won
    Lee, Jong-Hong
    Seo, Hee Won
    Han, Chang-Soo
    IEEE NMDC 2006: IEEE NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE 2006, PROCEEDINGS, 2006, : 492 - 493
  • [46] YIG FILM CHARACTERIZATION FOR MSW DEVICES
    ADAM, JD
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 1985, 4 (1-2) : 105 - 113
  • [47] Characterization of YIG nanopowders by mechanochemical synthesis
    Mergen, Ayhan
    Qureshi, Anjum
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 478 (1-2) : 741 - 744
  • [48] Fabrication of carbon nanotubes
    Kingston, CT
    Simard, B
    ANALYTICAL LETTERS, 2003, 36 (15) : 3119 - 3145
  • [49] Fabrication and characterization of nanocomposites reinforced by carbon nanotubes (2) - Testing of mechanical properties
    Tai, Nyan-Hwa
    Yeh, Meng-Kao
    Liu, Jia-Hau
    Yang, Chien-Hsin
    COMPOSITE MATERIALS IV, 2006, 313 : 1 - 6
  • [50] Fabrication and Characterization of Fully Flattened Carbon Nanotubes: A New Graphene Nanoribbon Analogue
    Choi, D. H.
    Wang, Q.
    Azuma, Y.
    Majima, Y.
    Warner, J. H.
    Miyata, Y.
    Shinohara, H.
    Kitaura, R.
    SCIENTIFIC REPORTS, 2013, 3