The Effect of Methods for Handling Missing Values on the Performance of the MEWMA Control Chart

被引:9
|
作者
Madbuly, Doaa F. [1 ]
Maravelakis, Petros E. [2 ]
Mahmoud, Mahmoud A. [1 ]
机构
[1] Cairo Univ, Dept Stat, Fac Econ & Polit Sci, Cairo, Egypt
[2] Univ Aegean, Dept Stat & Actuarial Financial Math, Samos, Greece
关键词
Average run length; Estimation effect; MEWMA control chart; Missing values; PARAMETERS;
D O I
10.1080/03610918.2012.665547
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article is concerned with the effect of the methods for handling missing values in multivariate control charts. We discuss the complete case, mean substitution, regression, stochastic regression, and the expectation-maximization algorithm methods for handling missing values. Estimates of mean vector and variance-covariance matrix from the treated data set are used to build the multivariate exponentially weighted moving average (MEWMA) control chart. Based on a Monte Carlo simulation study, the performance of each of the five methods is investigated in terms of its ability to obtain the nominal in-control and out-of-control average run length (ARL). We consider three sample sizes, five levels of the percentage of missing values, and three types of variable numbers. Our simulation results show that imputation methods produce better performance than case deletion methods. The regression-based imputation methods have the best overall performance among all the competing methods.
引用
收藏
页码:1437 / 1454
页数:18
相关论文
共 50 条
  • [41] ARL computation and parameters optimization for MEWMA control chart ased on the Markov chain
    Du, Fuzhou
    Tang, Xiaoqing
    Sun, Jing
    [J]. Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2006, 32 (08): : 974 - 978
  • [42] A hybrid model for economic design of MEWMA control chart under maintenance policies
    Mostafa Abouei Ardakan
    Ali Zeinal Hamadani
    Mohammad Sima
    Mohammad Reihaneh
    [J]. The International Journal of Advanced Manufacturing Technology, 2016, 83 : 2101 - 2110
  • [43] Methods to handle missing values and missing individuals
    Carl Bonander
    Ulf Strömberg
    [J]. European Journal of Epidemiology, 2019, 34 : 5 - 7
  • [44] Methods to handle missing values and missing individuals
    Bonander, Carl
    Stromberg, Ulf
    [J]. EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2019, 34 (01) : 5 - 7
  • [45] Effect of autocorrelation on performance of the MCUSUM control chart
    Noorossana, R
    Vaghefi, SJM
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2006, 22 (02) : 191 - 197
  • [46] Economic design of residuals MEWMA control chart with variable sampling intervals and sample size
    Xue, Li
    Wang, Qiuyu
    Li, Congkai
    An, Lisheng
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023,
  • [47] Comparing Methods for Handling Missing Data
    Roda, Celina
    Nicolis, Ioannis
    Momas, Isabelle
    Guihenneuc-Jouyaux, Chantal
    [J]. EPIDEMIOLOGY, 2013, 24 (03) : 469 - 471
  • [48] Multiple imputation methods for handling missing values in longitudinal studies with sampling weights: Comparison of methods implemented in Stata
    De Silva, Anurika P.
    De Livera, Alysha M.
    Lee, Katherine J.
    Moreno-Betancur, Margarita
    Simpson, Julie A.
    [J]. BIOMETRICAL JOURNAL, 2021, 63 (02) : 354 - 371
  • [49] MCAR, MAR, and MNAR Values in the Same Dataset: A Realistic Evaluation of Methods for Handling Missing Data
    Gomer, Brenna
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2019, 54 (01) : 153 - 153
  • [50] Performance of Methods for Handling Missing Categorical Covariate Data in Population Pharmacokinetic Analyses
    Keizer, Ron J.
    Zandvliet, Anthe S.
    Beijnen, Jos H.
    Schellens, Jan H. M.
    Huitema, Alwin D. R.
    [J]. AAPS JOURNAL, 2012, 14 (03): : 601 - 611