Auxiliary Problems in Convex Alternating Structure Optimization Algorithm

被引:0
|
作者
Zhang, Taozheng [1 ]
Wang, Xiaojie [2 ]
Chai, Jianping [1 ]
机构
[1] Commun Univ China, Informat Engn Sch, Beijing, Peoples R China
[2] Beijing Univ Posts & Telecommun, Ctr Intelligence Sci & Technol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Artificial intelligence; Convex Alternating Structure Optimization(cASO); Auxiliary problems(APs); Target problems(TPs); Relevancy; Orthogonality; Domain adaptation;
D O I
10.4028/www.scientific.net/AMM.263-266.2349
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
There exist principles of Relevancy, Orthogonality and Domain Adaptation for auxiliary problems (APs) selection in Alternating Structure Optimization (ASO) algorithm. Convex Alternating Structure Optimization (cASO) algorithm is an improved one based on ASO algorithm, whose kernel still lies in creating excellent APs. In order to validate the effectiveness of the preceding principles in cASO algorithm, many types of APs are created by taking example of Chinese syntactic chunking. Experimental results and analyses both demonstrate that those principles still hold in cASO algorithm.
引用
收藏
页码:2349 / +
页数:2
相关论文
共 50 条
  • [21] ON LOCAL CONVERGENCE OF ALTERNATING SCHEMES FOR OPTIMIZATION OF CONVEX PROBLEMS IN THE TENSOR TRAIN FORMAT
    Rohwedder, Thorsten
    Uschmajew, Andre
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (02) : 1134 - 1162
  • [22] PROXIMAL DECOMPOSITION OF CONVEX OPTIMIZATION VIA AN ALTERNATING LINEARIZATION ALGORITHM WITH INEXACT ORACLES
    Huang, Ming
    He, Yue
    Qiao, Ping-ping
    Lin, Si-da
    Li, Dan
    Yang, Yang
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2024, 20 (11) : 3355 - 3372
  • [23] AN ALGORITHM FOR APPROXIMATING NONDOMINATED POINTS OF CONVEX MULTIOBJECTIVE OPTIMIZATION PROBLEMS
    Ghaznavi, M.
    Azizi, Z.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (05) : 1399 - 1415
  • [24] Multivariate Spectral Gradient Algorithm for Nonsmooth Convex Optimization Problems
    Hu, Yaping
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [25] Note: An algorithm to solve polyhedral convex set optimization problems
    Loehne, Andreas
    Schrage, Carola
    OPTIMIZATION, 2015, 64 (09) : 2039 - 2041
  • [26] Adaptive Variant of the Frank–Wolfe Algorithm for Convex Optimization Problems
    G. V. Aivazian
    F. S. Stonyakin
    D. A. Pasechnyk
    M. S. Alkousa
    A. M. Raigorodsky
    I. V. Baran
    Programming and Computer Software, 2023, 49 : 493 - 504
  • [27] A decomposition algorithm for a class of constrained nonsmooth convex optimization problems
    Li, Dan
    Chen, Shuang
    Meng, Fan-Yun
    2016 IEEE INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC), 2016, : 685 - 690
  • [28] STRUCTURE PRESERVING REDUCTIONS AMONG CONVEX-OPTIMIZATION PROBLEMS
    AUSIELLO, G
    DATRI, A
    PROTASI, M
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1980, 21 (01) : 136 - 153
  • [29] THE ALTERNATING ALGORITHM IN UNIFORMLY CONVEX-SPACES
    FRANCHETTI, C
    LIGHT, W
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1984, 29 (JUN): : 545 - 555
  • [30] Adaptive Variant of the Frank-Wolfe Algorithm for Convex Optimization Problems
    Aivazian, G. V.
    Stonyakin, F. S.
    Pasechnyk, D. A.
    Alkousa, M. S.
    Raigorodsky, A. M.
    Baran, I. V.
    PROGRAMMING AND COMPUTER SOFTWARE, 2023, 49 (06) : 493 - 504