Periodic attenuating oscillation between soliton interactions for higher-order variable coefficient nonlinear Schrodinger equation

被引:116
|
作者
Liu, Xiaoyan [1 ,2 ]
Liu, Wenjun [1 ,2 ]
Triki, Houria [3 ]
Zhou, Qin [4 ]
Biswas, Anjan [5 ,6 ,7 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, POB 122, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, POB 122, Beijing 100876, Peoples R China
[3] Badji Mokhtar Univ, Radiat Phys Lab, Dept Phys, Fac Sci, POB 12, Annaba 23000, Algeria
[4] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Hubei, Peoples R China
[5] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[6] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[7] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
基金
中国国家自然科学基金;
关键词
The Hirota bilinear method; Soliton solutions; Periodic attenuating oscillation; OPTICAL SOLITONS; LASER; DISPERSION; WAVE; TRANSMISSION; MODULATION; BOUSSINESQ; ABSORBERS; WELL;
D O I
10.1007/s11071-019-04822-z
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
According to the change in the amplitude of the oscillation, it can be divided into equal-amplitude oscillation, amplitude-reduced oscillation (attenuating oscillation) and amplitude-increasing oscillation (divergence oscillation). In this paper, the periodic attenuating oscillation of solitons for a higher-order variable coefficient nonlinear Schrodinger equation is investigated. Analytic one- and two-soliton solutions of this equation are obtained by the Hirota bilinear method. By analyzing the soliton propagation properties, we study how to choose the corresponding parameters to control the soliton propagation and periodic attenuation oscillation phenomena. Results might be of significance for the study of optical communications including soliton control, amplification, compression and interactions.
引用
收藏
页码:801 / 809
页数:9
相关论文
共 50 条
  • [31] Collapse for the higher-order nonlinear Schrodinger equation
    Achilleos, V.
    Diamantidis, S.
    Frantzeskakis, D. J.
    Horikis, T. P.
    Karachalios, N. I.
    Kevrekidis, P. G.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2016, 316 : 57 - 68
  • [32] Three distinct and impressive visions for the soliton solutions to the higher-order nonlinear Schrodinger equation
    Bekir, Ahmet
    Zahran, Emad
    [J]. Optik, 2021, 228
  • [33] Spectral and soliton structures of the Sasa-Satsuma higher-order nonlinear Schrodinger equation
    Wu, Jianping
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (02)
  • [34] Kuznetsov-Ma soliton and Akhmediev breather of higher-order nonlinear Schrodinger equation
    Li, Zai-Dong
    Wu, Xuan
    Li, Qiu-Yan
    He, P. B.
    [J]. CHINESE PHYSICS B, 2016, 25 (01)
  • [35] Integrability and bright soliton solutions to the coupled nonlinear Schrodinger equation with higher-order effects
    Wang, Deng-Shan
    Yin, Shujuan
    Tian, Ye
    Liu, Yifang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 229 : 296 - 309
  • [36] Optical soliton solutions to a higher-order nonlinear Schrodinger equation with Kerr law nonlinearity
    Gunay, B.
    [J]. RESULTS IN PHYSICS, 2021, 27
  • [37] Spectral transverse instabilities and soliton dynamics in the higher-order multidimensional nonlinear Schrodinger equation
    Cole, Justin T.
    Musslimani, Ziad H.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2015, 313 : 26 - 36
  • [38] Three distinct and impressive visions for the soliton solutions to the higher-order nonlinear Schrodinger equation
    Bekir, Ahmet
    Zahran, Emad
    [J]. OPTIK, 2021, 228
  • [39] Breathers and multi-soliton solutions for the higher-order generalized nonlinear Schrodinger equation
    Guo, Rui
    Hao, Hui-Qin
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (09) : 2426 - 2435
  • [40] Exact multisoliton solutions of the higher-order nonlinear Schrodinger equation with variable coefficients
    Hao, RY
    Li, L
    Li, ZH
    Zhou, GS
    [J]. PHYSICAL REVIEW E, 2004, 70 (06):