Differential Equations of the Space-Like Loxodromes on the Helicoidal Surfaces in Minkowski 3-Space

被引:6
|
作者
Babaarslan, Murat [1 ]
Kayacik, Mustafa [1 ]
机构
[1] Bozok Univ, Dept Math, TR-66100 Yozgat, Turkey
关键词
Loxodrome; Helicoidal surface; Minkowski space;
D O I
10.1007/s12591-016-0343-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we investigate the differential equations of the space-like loxodromes on the helicoidal surfaces having space-like meridians and time-like meridians, respectively in Minkowski 3-space. Also we illustrate our main results by using Mathematica.
引用
收藏
页码:495 / 512
页数:18
相关论文
共 50 条
  • [31] Geometry of Hasimoto Surfaces in Minkowski 3-Space
    Melek Erdoğdu
    Mustafa Özdemir
    Mathematical Physics, Analysis and Geometry, 2014, 17 : 169 - 181
  • [32] INFINITESIMAL DEFORMATIONS OF TIME-LIKE SURFACES IN MINKOWSKI 3-SPACE
    左达峰
    陈卿
    程艺
    周扣华
    Acta Mathematica Scientia, 2004, (04) : 519 - 528
  • [33] Infinitesimal deformations of time-like surfaces in Minkowski 3-space
    Zuo, DF
    Chen, Q
    Cheng, Y
    Zhou, KH
    ACTA MATHEMATICA SCIENTIA, 2004, 24 (04) : 519 - 528
  • [34] Surfaces in Minkowski 3-space and harmonic maps
    Inoguchi, JI
    HARMONIC MORPHISMS, HARMONIC MAPS, AND RELATED TOPICS, 2000, 413 : 249 - 270
  • [35] Ruled Weingarten surfaces in Minkowski 3-space
    Franki Dillen
    Wolfgang Kühnel
    manuscripta mathematica, 1999, 98 : 307 - 320
  • [36] Spacelike Circular Surfaces in Minkowski 3-Space
    Li, Yanlin
    Aldossary, Maryam T.
    Abdel-Baky, Rashad A.
    SYMMETRY-BASEL, 2023, 15 (01):
  • [37] TIMELIKE SURFACES OF EVOLUTION IN MINKOWSKI 3-SPACE
    Yavuz, Yunus
    Yazla, Aziz
    Sariaydin, Muhammed T.
    JOURNAL OF SCIENCE AND ARTS, 2020, (03): : 611 - 626
  • [38] Ruled Weingarten surfaces in Minkowski 3-space
    Dillen, F
    Kühnel, W
    MANUSCRIPTA MATHEMATICA, 1999, 98 (03) : 307 - 320
  • [39] Surfaces with common geodesic in Minkowski 3-space
    Kasap, Emin
    Akyildiz, F. Talay
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 177 (01) : 260 - 270
  • [40] ON LORENTZ GCR SURFACES IN MINKOWSKI 3-SPACE
    Fu, Yu
    Yang, Dan
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (01) : 227 - 245