Tuning parameter calibration for l1-regularized logistic regression

被引:10
|
作者
Li, Wei [1 ]
Lederer, Johannes [2 ,3 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing, Peoples R China
[2] Univ Washington, Dept Stat, Seattle, WA 98195 USA
[3] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
关键词
Feature selection; Penalized logistic regression; Tuning parameter calibration; VARIABLE SELECTION; MODEL SELECTION; LASSO; CLASSIFICATION; PREDICTION;
D O I
10.1016/j.jspi.2019.01.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Feature selection is a standard approach to understanding and modeling high-dimensional classification data, but the corresponding statistical methods hinge on tuning parameters that are difficult to calibrate. In particular, existing calibration schemes in the logistic regression framework lack any finite sample guarantees. In this paper, we introduce a novel calibration scheme for l(1)-penalized logistic regression. It is based on simple tests along the tuning parameter path and is equipped with optimal guarantees for feature selection. It is also amenable to easy and efficient implementations, and it rivals or outmatches existing methods in simulations and real data applications. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:80 / 98
页数:19
相关论文
共 50 条
  • [31] The Split Bregman Method for L1-Regularized Problems
    Goldstein, Tom
    Osher, Stanley
    SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (02): : 323 - 343
  • [32] Stochastic Methods for l1-regularized Loss Minimization
    Shalev-Shwartz, Shai
    Tewari, Ambuj
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 1865 - 1892
  • [33] L1-Regularized Continuous Conditional Random Fields
    Wang, Xishun
    Ren, Fenghui
    Liu, Chen
    Zhang, Minjie
    PRICAI 2016: TRENDS IN ARTIFICIAL INTELLIGENCE, 2016, 9810 : 793 - 804
  • [34] Learning Rates for l1-Regularized Kernel Classifiers
    Tong, Hongzhi
    Chen, Di-Rong
    Yang, Fenghong
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [35] L1-regularized functional support vector machine
    Liu, Bingfan
    Sang, Peijun
    STATISTICS AND ITS INTERFACE, 2024, 17 (03) : 349 - 356
  • [36] Regularization Parameter Tuning Optimization Approach in Logistic Regression
    El-Koka, Ahmed
    Era, Kyung-Hwan
    Kang, Dae-Ki
    2013 15TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT), 2013, : 13 - 18
  • [37] Sparsistency of l1-Regularized M-Estimators
    Li, Yen-Huan
    Scarlett, Jonathan
    Ravikumar, Pradeep
    Cevher, Volkan
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 644 - 652
  • [38] High-Dimensional Poisson Structural Equation Model Learning via l1-Regularized Regression
    Park, Gunwoong
    Park, Sion
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [39] Krylov subspace solvers for l1 regularized logistic regression method
    El Guide, M.
    Jbilou, K.
    Koukouvinos, C.
    Lappa, A.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (06) : 2738 - 2751
  • [40] Wiring Diagnostics Via l1-Regularized Least Squares
    Schuet, Stefan
    IEEE SENSORS JOURNAL, 2010, 10 (07) : 1218 - 1225