Plug-in marginal estimation under a general regression model with missing responses and covariates

被引:3
|
作者
Bianco, Ana M. [1 ,2 ]
Boente, Graciela [3 ,4 ]
Gonzalez-Manteiga, Wenceslao [5 ]
Perez-Gonzalez, Ana [6 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Inst Calculo, Ciudad Univ,Pabellon 2, RA-1428 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Ciudad Univ,Pabellon 2, RA-1428 Buenos Aires, DF, Argentina
[3] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
[4] Consejo Nacl Invest Cient & Tecn, IMAS, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
[5] Univ Santiago de Compostela, Fac Math, Fac Matemat, Dept Estat Anal Matemat & Optimizac, Campus Sur, Santiago De Compostela 15706, Spain
[6] Univ Vigo, Dept Estadist & Invest Operat, Campus Orense,Campus Univ As Lagoas S-N, Orense 32004, Spain
关键词
Fisher consistency; Kernel weights; L-estimators; Marginal functionals; Missing at random; Semiparametric models; NONPARAMETRIC-ESTIMATION; EFFICIENT ESTIMATION; INFERENCE; QUANTILES; FUNCTIONALS;
D O I
10.1007/s11749-018-0591-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider a general regression model where missing data occur in the response and in the covariates. Our aim is to estimate the marginal distribution function and a marginal functional, such as the mean, the median or any -quantile of the response variable. A missing at random condition is assumed in order to prevent from bias in the estimation of the marginal measures under a non-ignorable missing mechanism. We give two different approaches for the estimation of the responses distribution function and of a given marginal functional, involving inverse probability weighting and the convolution of the distribution function of the observed residuals and that of the observed estimated regression function. Through a Monte Carlo study and two real data sets, we illustrate the behaviour of our proposals.
引用
下载
收藏
页码:106 / 146
页数:41
相关论文
共 50 条
  • [1] Plug-in marginal estimation under a general regression model with missing responses and covariates
    Ana M. Bianco
    Graciela Boente
    Wenceslao González-Manteiga
    Ana Pérez-González
    TEST, 2019, 28 : 106 - 146
  • [2] Estimation in a general semiparametric hazards regression model with missing covariates
    Jin, Jin
    Sun, Liuquan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (09) : 3070 - 3097
  • [3] Estimation in a Markov chain regression model with missing covariates
    Dabrowska, DM
    Elashoff, RM
    Morton, DL
    PROBABILITY, STATISTICS AND MODELLING IN PUBLIC HEALTH, 2006, : 90 - +
  • [4] Estimation of the marginal location under a partially linear model with missing responses
    Bianco, Ana
    Boente, Graciela
    Gonzalez-Manteiga, Wenceslao
    Perez-Gonzalez, Ana
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (02) : 546 - 564
  • [5] Semiparametric estimation of logistic regression model with missing covariates and outcome
    Shen-Ming Lee
    Chin-Shang Li
    Shu-Hui Hsieh
    Li-Hui Huang
    Metrika, 2012, 75 : 621 - 653
  • [6] Semiparametric estimation of logistic regression model with missing covariates and outcome
    Lee, Shen-Ming
    Li, Chin-Shang
    Hsieh, Shu-Hui
    Huang, Li-Hui
    METRIKA, 2012, 75 (05) : 621 - 653
  • [7] Plug-in estimation of general level sets
    Cuevas, A
    González-Manteiga, W
    Rodríguez-Casal, A
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2006, 48 (01) : 7 - 19
  • [8] Unified estimation for Cox regression model with nonmonotone missing at random covariates
    Thiessen, David Luke
    Zhao, Yang
    Tu, Dongsheng
    STATISTICS IN MEDICINE, 2022, 41 (24) : 4781 - 4790
  • [9] Efficient estimation in a regression model with missing responses
    Crawford, Scott D.
    STATISTICAL METHODOLOGY, 2014, 16 : 32 - 46
  • [10] Semiparametric estimation of a zero-inflated Poisson regression model with missing covariates
    Lukusa, T. Martin
    Lee, Shen-Ming
    Li, Chin-Shang
    METRIKA, 2016, 79 (04) : 457 - 483