Machine-Learning Spectral Indicators of Topology

被引:14
|
作者
Andrejevic, Nina [1 ,2 ,3 ]
Andrejevic, Jovana [4 ,5 ]
Bernevig, B. Andrei [6 ,7 ,8 ]
Regnault, Nicolas [6 ]
Han, Fei [2 ,9 ]
Fabbris, Gilberto [10 ]
Thanh Nguyen [2 ,9 ]
Drucker, Nathan C. [2 ,5 ]
Rycroft, Chris H. [5 ,11 ,12 ]
Li, Mingda [2 ,9 ]
机构
[1] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
[2] MIT, Quantum Measurement Grp, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[4] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA
[5] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[6] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[7] Donostia Int Phys Ctr, P Manuel de Lardizabal 4, Donostia San Sebastian 20018, Spain
[8] Basque Fdn Sci, Ikerbasque, Plaza Euskadi 5, Bilbao 48009, Spain
[9] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[10] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA
[11] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[12] Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
machine learning; topological materials; X-ray absorption spectroscopy; MATERIALS DISCOVERY; CATALOG;
D O I
10.1002/adma.202204113
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Topological materials discovery has emerged as an important frontier in condensed matter physics. While theoretical classification frameworks have been used to identify thousands of candidate topological materials, experimental determination of materials' topology often poses significant technical challenges. X-ray absorption spectroscopy (XAS) is a widely used materials characterization technique sensitive to atoms' local symmetry and chemical bonding, which are intimately linked to band topology by the theory of topological quantum chemistry (TQC). Moreover, as a local structural probe, XAS is known to have high quantitative agreement between experiment and calculation, suggesting that insights from computational spectra can effectively inform experiments. In this work, computed X-ray absorption near-edge structure (XANES) spectra of more than 10 000 inorganic materials to train a neural network (NN) classifier that predicts topological class directly from XANES signatures, achieving F-1 scores of 89% and 93% for topological and trivial classes, respectively is leveraged. Given the simplicity of the XAS setup and its compatibility with multimodal sample environments, the proposed machine-learning-augmented XAS topological indicator has the potential to discover broader categories of topological materials, such as non-cleavable compounds and amorphous materials, and may further inform field-driven phenomena in situ, such as magnetic field-driven topological phase transitions.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Do Machine-Learning Machines Learn?
    Bringsjord, Selmer
    Govindarajulu, Naveen Sundar
    Banerjee, Shreya
    Hummel, John
    [J]. PHILOSOPHY AND THEORY OF ARTIFICIAL INTELLIGENCE 2017, 2018, 44 : 136 - 157
  • [42] Machine-learning identification of asteroid groups
    Carruba, V.
    Aljbaae, S.
    Lucchini, A.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 488 (01) : 1377 - 1386
  • [43] A machine-learning benchmark for facies classification
    Alaudah, Yazeed
    Michalowicz, Patrycja
    Alfarraj, Motaz
    Alregib, Ghassan
    [J]. INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2019, 7 (03): : SE175 - SE187
  • [44] SHOW YOUR MACHINE-LEARNING WORK
    Higginbotham, Stacey
    [J]. IEEE SPECTRUM, 2019, 56 (12) : 20 - 20
  • [45] Machine-learning reprogrammable metasurface imager
    Li, Lianlin
    Ruan, Hengxin
    Liu, Che
    Li, Ying
    Shuang, Ya
    Alu, Andrea
    Qiu, Cheng-Wei
    Cui, Tie Jun
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [46] Machine-learning performance put to the test
    Lemonick, Sam
    [J]. CHEMICAL & ENGINEERING NEWS, 2021, 99 (13) : 16 - 17
  • [47] APPLICATION OF THE WAVELET TRANSFORM IN MACHINE-LEARNING
    Dumitrescu, Catalin
    Costea, Ilona Madalina
    Nemtanu, Florin Codrut
    Stan, Valentin Alexandru
    Gheorghiu, Andrei Razvan
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2014, 76 (04): : 167 - 178
  • [48] Application of the wavelet transform in machine-learning
    [J]. 1600, Politechnica University of Bucharest (76):
  • [49] Machine-learning frameworks in molecular simulation
    Kitchin, John
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [50] Machine-learning exploration of polymer compatibility
    Liang, Zhilong
    Li, Zhiwei
    Zhou, Shuo
    Sun, Yiwen
    Yuan, Jinying
    Zhang, Changshui
    [J]. CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (06):