Machine-Learning Spectral Indicators of Topology

被引:14
|
作者
Andrejevic, Nina [1 ,2 ,3 ]
Andrejevic, Jovana [4 ,5 ]
Bernevig, B. Andrei [6 ,7 ,8 ]
Regnault, Nicolas [6 ]
Han, Fei [2 ,9 ]
Fabbris, Gilberto [10 ]
Thanh Nguyen [2 ,9 ]
Drucker, Nathan C. [2 ,5 ]
Rycroft, Chris H. [5 ,11 ,12 ]
Li, Mingda [2 ,9 ]
机构
[1] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
[2] MIT, Quantum Measurement Grp, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[4] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA
[5] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[6] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[7] Donostia Int Phys Ctr, P Manuel de Lardizabal 4, Donostia San Sebastian 20018, Spain
[8] Basque Fdn Sci, Ikerbasque, Plaza Euskadi 5, Bilbao 48009, Spain
[9] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[10] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA
[11] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[12] Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
machine learning; topological materials; X-ray absorption spectroscopy; MATERIALS DISCOVERY; CATALOG;
D O I
10.1002/adma.202204113
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Topological materials discovery has emerged as an important frontier in condensed matter physics. While theoretical classification frameworks have been used to identify thousands of candidate topological materials, experimental determination of materials' topology often poses significant technical challenges. X-ray absorption spectroscopy (XAS) is a widely used materials characterization technique sensitive to atoms' local symmetry and chemical bonding, which are intimately linked to band topology by the theory of topological quantum chemistry (TQC). Moreover, as a local structural probe, XAS is known to have high quantitative agreement between experiment and calculation, suggesting that insights from computational spectra can effectively inform experiments. In this work, computed X-ray absorption near-edge structure (XANES) spectra of more than 10 000 inorganic materials to train a neural network (NN) classifier that predicts topological class directly from XANES signatures, achieving F-1 scores of 89% and 93% for topological and trivial classes, respectively is leveraged. Given the simplicity of the XAS setup and its compatibility with multimodal sample environments, the proposed machine-learning-augmented XAS topological indicator has the potential to discover broader categories of topological materials, such as non-cleavable compounds and amorphous materials, and may further inform field-driven phenomena in situ, such as magnetic field-driven topological phase transitions.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A machine-learning framework for isogeometric topology optimization
    Zhaohui Xia
    Haobo Zhang
    Ziao Zhuang
    Chen Yu
    Jingui Yu
    Liang Gao
    [J]. Structural and Multidisciplinary Optimization, 2023, 66
  • [2] A machine-learning framework for isogeometric topology optimization
    Xia, Zhaohui
    Zhang, Haobo
    Zhuang, Ziao
    Yu, Chen
    Yu, Jingui
    Gao, Liang
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2023, 66 (04)
  • [3] Machine-learning assisted topology optimization for architectural design with artistic flavor
    Zhang, Weisheng
    Wang, Yue
    Du, Zongliang
    Liu, Chang
    Youn, Sung-Kie
    Guo, Xu
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 413
  • [4] A Comparison of Machine-Learning Methods to Select Socioeconomic Indicators in Cultural Landscapes
    Maldonado, Ana D.
    Ramos-Lopez, Dario
    Aguilera, Pedro A.
    [J]. SUSTAINABILITY, 2018, 10 (11)
  • [5] Identification of Single Spectral Lines in Large Spectroscopic Surveys Using UMLAUT: an Unsupervised Machine-learning Algorithm Based on Unbiased Topology
    Baronchelli, I
    Scarlata, C. M.
    Rodriguez-Munoz, L.
    Bonato, M.
    Morselli, L.
    Vaccari, M.
    Carraro, R.
    Barrufet, L.
    Henry, A.
    Mehta, V
    Rodighiero, G.
    Baruffolo, A.
    Bagley, M.
    Battisti, A.
    Colbert, J.
    Dai, Y. S.
    De Pascale, M.
    Dickinson, H.
    Malkan, M.
    Mancini, C.
    Rafelski, M.
    Teplitz, H., I
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2021, 257 (02):
  • [6] Machine-learning in astronomy
    Hobson, Michael
    Graff, Philip
    Feroz, Farhan
    Lasenby, Anthony
    [J]. STATISTICAL CHALLENGES IN 21ST CENTURY COSMOLOGY, 2015, 10 (306): : 279 - 287
  • [7] Machine-learning design
    Changjun Zhang
    [J]. Nature Energy, 2018, 3 : 535 - 535
  • [8] Machine-learning design
    Zhang, Changjun
    [J]. NATURE ENERGY, 2018, 3 (07): : 535 - 535
  • [9] Machine-Learning the Landscape
    He, Yang-Hui
    [J]. CALABI-YAU LANDSCAPE: FROM GEOMETRY, TO PHYSICS, TO MACHINE LEARNING, 2021, 2293 : 87 - 130
  • [10] Machine-learning wistfulness
    Davenport, Matt
    [J]. CHEMICAL & ENGINEERING NEWS, 2017, 95 (18) : 40 - 40