Influence of Piezoelectric Energy Transfer on the Interwell Oscillations of Multistable Vibration Energy Harvesters

被引:8
|
作者
Kumar, Aravind [1 ]
Ali, Shaikh Faruque [1 ]
Arockiarajan, A. [1 ]
机构
[1] Indian Inst Technol Madras, Dept Appl Mech, Chennai 600036, India
来源
关键词
D O I
10.1115/1.4042139
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This manuscript investigates the effect of nonconservative electromechanical energy transfer on the onset of interwell motions in multistable piezoelectric energy harvesters. Multistable piezoelectric energy harvesters have been proven to outperform their linear counterparts when they undergo interwell oscillations. The conditions for interwell oscillations in such harvesters are generally characterized in terms of their potential energy function. This is accurate for a stand-alone mechanical oscillator but when the piezoelectric patches and a load resistance are included, a part of the kinetic energy supplied to the system is converted into electrical energy. In this manuscript, the Melnikov necessary conditions for interwell oscillations are derived, considering the effect of this nonconservative piezoelectric energy transfer. Through Melnikov theoretic analysis, it is shown that in a tristable harvester with all the three potential wells having the same depth, a higher excitation level is required to enable exits from the middle well to the outer wells when compared to the exits from the outer wells to the middle well. This is in stark contrast to a stand-alone tristable mechanical oscillator wherein interwell motions are simultaneously enabled for all the wells having the same depth.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Current situation and developing trend of piezoelectric vibration energy harvesters
    Liu, Xiang-Jian
    Chen, Ren-Wen
    Zhendong yu Chongji/Journal of Vibration and Shock, 2012, 31 (16): : 169 - 176
  • [32] Power and electromechanical coupling of nonlinear piezoelectric vibration energy harvesters
    Lan, Chunbo
    Liao, Yabin
    Hu, Guobiao
    Tang, Lihua
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS XIV, 2020, 11376
  • [33] A review of vibration-based MEMS piezoelectric energy harvesters
    Saadon, Salem
    Sidek, Othman
    ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (01) : 500 - 504
  • [34] Effects of Proof Mass Geometry on Piezoelectric Vibration Energy Harvesters
    Alameh, Abdul Hafiz
    Gratuze, Mathieu
    Elsayed, Mohannad Y.
    Nabki, Frederic
    SENSORS, 2018, 18 (05)
  • [35] Array of Piezoelectric Energy Harvesters
    Lien, I. C.
    Shu, Y. C.
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2011, 2011, 7977
  • [36] On the efficiency of piezoelectric energy harvesters
    Yang, Zhengbao
    Erturk, Alper
    Zu, Jean
    EXTREME MECHANICS LETTERS, 2017, 15 : 26 - 37
  • [37] PIEZOELECTRIC MEMS ENERGY HARVESTERS
    Yeo, Hong Goo
    Yeager, Charles
    Ma, Xiaokun
    Ramirez, J. Israel
    Sun, Kaige G.
    Rahn, Christopher
    Jackson, Thomas N.
    Trolier-McKinstry, Susan
    PROCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, 2014, VOL 2, 2014,
  • [38] GENERATION OF ENERGY IN CONSOLE PIEZOELECTRIC ENERGY HARVESTERS
    Grigoryeva, L. O.
    Ivanenko, P. O.
    Korbakov, O. F.
    OPIR MATERIALIV I TEORIA SPORUD-STRENGTH OF MATERIALS AND THEORY OF STRUCTURES, 2022, (108): : 337 - 348
  • [39] On the Nonlinear Behavior of the Piezoelectric Coupling on Vibration-Based Energy Harvesters
    Silva, Luciana L.
    Savi, Marcelo A.
    Monteiro, Paulo C. C., Jr.
    Netto, Theodoro A.
    SHOCK AND VIBRATION, 2015, 2015
  • [40] A consistent geometrically nonlinear model of cantilevered piezoelectric vibration energy harvesters
    Li, Jiajie
    He, Xuefeng
    Yang, Xiaokang
    Liu, Yufei
    JOURNAL OF SOUND AND VIBRATION, 2020, 486