Probabilistic Galois theory for quartic polynomials

被引:5
|
作者
Dietmann, Rainer [1 ]
机构
[1] Inst Algebra & Zahlentheorie, D-70550 Stuttgart, Germany
关键词
D O I
10.1017/S0017089506003272
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that there are only O(H3+epsilon) quartic integer polynomials with height at most H and a Galois group which is a proper subgroup of S-4. This improves in the special case of degree four a bound by Gallagher that yielded O(H-7/2 log H).
引用
收藏
页码:553 / 556
页数:4
相关论文
共 50 条