Probabilistic Galois theory in function fields

被引:0
|
作者
Entin, Alexei [1 ]
Popov, Alexander [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
关键词
Galois theory; Polynomials; Finite fields; Probability; IRREDUCIBLE POLYNOMIALS; VALUES;
D O I
10.1016/j.ffa.2024.102466
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the irreducibility and Galois group of random polynomials over function fields. We prove that a random polynomial f= yn+ n-1i=0ai(x)yi. Fq[x][y] with i.i.d. coefficients aitaking values in the set {a(x). Fq[x] : dega = d} with uniform probability, is irreducible with probability tending to 1 - 1qdas n.8, where dand qare fixed. We also prove that with the same probability, the Galois group of this random polynomial contains the alternating group An. Moreover, we prove that if we assume a version of the polynomial Chowla conjecture over Fq[x], then the Galois group of this polynomial is actually equal to the symmetric group Snwith probability tending to 1 - 1qd. We also study the other possible Galois groups occurring with positive limit probability. Finally, we study the same problems with nfixed and d.8. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Probabilistic Galois theory over p-adic fields
    Weiss, Benjamin L.
    [J]. JOURNAL OF NUMBER THEORY, 2013, 133 (05) : 1537 - 1563
  • [2] NEW PROOF IN GALOIS THEORY OF FUNCTION FIELDS
    GAY, DA
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A73 - A73
  • [3] Probabilistic Galois theory
    Dietmann, Rainer
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 : 453 - 462
  • [4] APPLICATION OF MODEL THEORY TO GALOIS GROUPS OF FUNCTION-FIELDS
    VANDENDRIES, L
    RIBENBOIM, P
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 288 (17): : 789 - 792
  • [5] Local-global Galois theory of arithmetic function fields
    Harbater, David
    Hartmann, Julia
    Krashen, Daniel
    Parimala, Raman
    Suresh, Venapally
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2019, 232 (02) : 849 - 882
  • [6] Local-global Galois theory of arithmetic function fields
    David Harbater
    Julia Hartmann
    Daniel Krashen
    Raman Parimala
    Venapally Suresh
    [J]. Israel Journal of Mathematics, 2019, 232 : 849 - 882
  • [7] ELEMENTARY THEORIES ON ARITHMETIC AND GALOIS THEORY OF FUNCTION-FIELDS
    SCHUPPAR, B
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1980, 313 : 59 - 71
  • [8] GALOIS THEORY OF DIFFERENTIAL FIELDS
    KOLCHIN, ER
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1953, 75 (06) : 753 - 824
  • [9] ON THE GALOIS THEORY OF DIFFERENTIAL FIELDS
    KOLCHIN, ER
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1955, 77 (04) : 868 - 894
  • [10] Galois theory for fuzzy fields
    Somodi, M
    [J]. FUZZY SETS AND SYSTEMS, 2001, 117 (03) : 413 - 418