Weighted norm estimates for the maximal operator of the Laguerre functions heat diffusion semigroup

被引:14
|
作者
Macías, R
Segovia, C
Torrea, JL
机构
[1] Univ Nacl Litoral, CONICET, IMAL FIQ, RA-3000 Santa Fe, Argentina
[2] Univ Autonoma Madrid, Fac Ciencias, Dept Matemat, E-28049 Madrid, Spain
[3] Consejo Nacl Invest Cient & Tecn, Inst Argentino Matemat, RA-1083 Buenos Aires, DF, Argentina
关键词
heat and Poisson semigroups; Laguerre functions;
D O I
10.4064/sm172-2-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain weighted L-p boundedness, with weights of the type y(delta), delta > -1, for the maximal operator of the heat semigroup associated to the Laguerre functions, {L-k(alpha)}(k), when the parameter alpha is greater than - 1. It is proved that when - 1 < alpha < 0, the maximal operator is of strong type (p, p) if p > 1 and 2 (1 + delta) / (2 + alpha) < p < 2 (1 + delta)/(-alpha), and if alpha >= 0 it is of strong type for 1 < p <= infinity and 2(1 + delta)/(2 + alpha) < p. The behavior at the end points of the intervals where there is strong type is studied in detail and sharp results about the existence or not of strong, weak or restricted types are given.
引用
收藏
页码:149 / 167
页数:19
相关论文
共 50 条