Subspace Learning Based Low-Rank Representation

被引:0
|
作者
Tang, Kewei [1 ]
Liu, Xiaodong [2 ]
Su, Zhixun [2 ]
Jiang, Wei [1 ]
Dong, Jiangxin [2 ]
机构
[1] Liaoning Normal Univ, Sch Math, Dalian, Peoples R China
[2] Dalian Univ Technol, Sch Math Sci, Dalian, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
FACE RECOGNITION; SEGMENTATION; ALGORITHM; ROBUST;
D O I
10.1007/978-3-319-54181-5_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Subspace segmentation has been a hot topic in the past decades. Recently, spectral-clustering based methods arouse broad interests, however, they usually consider the similarity extraction in the original space. In this paper, we propose subspace learning based low-rank representation to learn a subspace favoring the similarity extraction for the low-rank representation. The process of learning the subspace and achieving the representation is conducted simultaneously and thus they can benefit from each other. After extending the linear projection to nonlinear mapping, our method can handle manifold clustering problem which is a general case of subspace segmentation. Moreover, our method can also be applied in the problem of recognition by adding suitable penalty on the learned subspace. Extensive experimental results confirm the effectiveness of our method.
引用
收藏
页码:416 / 431
页数:16
相关论文
共 50 条
  • [21] Low-rank subspace learning based network community detection
    Ding, Zhuanlian
    Zhang, Xingyi
    Sun, Dengdi
    Luo, Bin
    KNOWLEDGE-BASED SYSTEMS, 2018, 155 : 71 - 82
  • [22] Low-rank representation with graph regularization for subspace clustering
    He, Wu
    Chen, Jim X.
    Zhang, Weihua
    SOFT COMPUTING, 2017, 21 (06) : 1569 - 1581
  • [23] Subspace clustering using a symmetric low-rank representation
    Chen, Jie
    Mao, Hua
    Sang, Yongsheng
    Yi, Zhang
    KNOWLEDGE-BASED SYSTEMS, 2017, 127 : 46 - 57
  • [24] Constrained Low-Rank Representation for Robust Subspace Clustering
    Wang, Jing
    Wang, Xiao
    Tian, Feng
    Liu, Chang Hong
    Yu, Hongchuan
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (12) : 4534 - 4546
  • [25] Robust discriminant low-rank representation for subspace clustering
    Xian Zhao
    Gaoyun An
    Yigang Cen
    Hengyou Wang
    Ruizhen Zhao
    Soft Computing, 2019, 23 : 7005 - 7013
  • [26] Robust Recovery of Subspace Structures by Low-Rank Representation
    Liu, Guangcan
    Lin, Zhouchen
    Yan, Shuicheng
    Sun, Ju
    Yu, Yong
    Ma, Yi
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (01) : 171 - 184
  • [27] Robust discriminant low-rank representation for subspace clustering
    Zhao, Xian
    An, Gaoyun
    Cen, Yigang
    Wang, Hengyou
    Zhao, Ruizhen
    SOFT COMPUTING, 2019, 23 (16) : 7005 - 7013
  • [28] Multiview Subspace Clustering Using Low-Rank Representation
    Chen, Jie
    Yang, Shengxiang
    Mao, Hua
    Fahy, Conor
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (11) : 12364 - 12378
  • [29] Robust Subspace Segmentation Via Low-Rank Representation
    Chen, Jinhui
    Yang, Jian
    IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (08) : 1432 - 1445
  • [30] Low-rank representation with graph regularization for subspace clustering
    Wu He
    Jim X. Chen
    Weihua Zhang
    Soft Computing, 2017, 21 : 1569 - 1581