Bioactive Scaffold Fabricated by 3D Printing for Enhancing Osteoporotic Bone Regeneration

被引:7
|
作者
Zhang, Xiaoting [1 ,2 ]
Wang, Xinluan [3 ]
Lee, Yuk-wai [4 ,5 ,6 ]
Feng, Lu [1 ,2 ]
Wang, Bin [1 ,2 ]
Pan, Qi [1 ,2 ]
Meng, Xiangbo [3 ]
Cao, Huijuan [3 ]
Li, Linlong [1 ,2 ]
Wang, Haixing [1 ,2 ]
Bai, Shanshan [1 ,2 ]
Kong, Lingchi [1 ,2 ]
Chow, Dick Ho Kiu [1 ,2 ]
Qin, Ling [1 ,2 ]
Cui, Liao [7 ,8 ]
Lin, Sien [1 ,2 ]
Li, Gang [1 ,2 ]
机构
[1] Chinese Univ Hong Kong, Prince Wales Hosp, Dept Orthopaed & Traumatol, Musculoskeletal Res Lab, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, Prince Wales Hosp, Li Ka Shing Inst Hlth Sci, Stem Cells & Regenerat Med Lab, Hong Kong, Peoples R China
[3] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[4] Chinese Univ Hong Kong, Dept Orthopaed & Traumatol, SH Ho Scoliosis Res Lab, Hong Kong, Peoples R China
[5] Chinese Univ Hong Kong, Joint Scoliosis Res Ctr Chinese Univ Hong Kong &, Hong Kong, Peoples R China
[6] Chinese Univ Hong Kong, Li Ka Shing Inst Hlth Sci, Hong Kong, Peoples R China
[7] Guangdong Med Univ, Sch Pharm, Zhanjiang 524023, Peoples R China
[8] Guangdong Med Univ, Guangdong Key Lab Res & Dev Nat Drugs, Zhanjiang 524023, Peoples R China
来源
BIOENGINEERING-BASEL | 2022年 / 9卷 / 10期
基金
中国国家自然科学基金;
关键词
osteoporotic bone regeneration; PLGA; TCP; icaritin; secretome; additive effect; focal adhesion signalling;
D O I
10.3390/bioengineering9100525
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We develop a poly (lactic-co-glycolic acid)/beta-calcium phosphate (PLGA/TCP)-based scaffold through a three-dimensional (3D) printing technique incorporating icaritin (ICT), a unique phytomolecule, and secretome derived from human fetal mesenchymal stem cells (HFS), to provide mechanical support and biological cues for stimulating bone defect healing. With the sustained release of ICT and HFS from the composite scaffold, the cell-free scaffold efficiently facilitates the migration of MSCs and promotes bone regeneration at the femoral defect site in the ovariectomy (OVX)-induced osteoporotic rat model. Furthermore, mechanism study results indicate that the combination of ICT and HFS additively activates the Integrin-FAK (focal adhesion kinase)-ERK1/2 (extracellular signal-regulated kinase 1/2)-Runx2 (Runt-related transcription factor 2) axis, which could be linked to the beneficial recruitment of MSCs to the implant and subsequent osteogenesis enhancement. Collectively, the PLGA/TCP/ICT/HFS (P/T/I/S) bioactive scaffold is a promising biomaterial for repairing osteoporotic bone defects, which may have immense implications for their translation to clinical practice.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Lanthanum doped octacalcium phosphate/polylactic acid scaffold fabricated by 3D printing for bone tissue engineering
    Xu, Zeya
    Lin, Bin
    Zhao, Chaoqian
    Lu, Yanjin
    Huang, Tingting
    Chen, Yan
    Li, Jungang
    Wu, Rongcan
    Liu, Wenge
    Lin, Jinxin
    [J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 118 : 229 - 242
  • [32] Lanthanum doped octacalcium phosphate/polylactic acid scaffold fabricated by 3D printing for bone tissue engineering
    Zeya Xu
    Bin Lin
    Chaoqian Zhao
    Yanjin Lu
    Tingting Huang
    Yan Chen
    Jungang Li
    Rongcan Wu
    Wenge Liu
    Jinxin Lin
    [J]. Journal of Materials Science & Technology, 2022, 118 (23) : 229 - 242
  • [33] Seamless route of self-assembly and 3D printing to fabricate hierarchical mesoporous bioactive glass scaffold for customized bone regeneration with enhanced efficacy
    Wang, Zeying
    Lin, Dan
    Wang, Minjiao
    Mao, Runyi
    Zhao, Hanjiang
    Huang, Xingtai
    Shen, Steve G. F.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2022, 446
  • [34] Development of a plasma-based 3D printing system for enhancing the biocompatibility of 3D scaffold
    Kim, Seung Hyeon
    Lee, Jae Seo
    Lee, Sang Jin
    Nah, Haram
    Min, Sung Jun
    Moon, Ho Jin
    Bang, Jae Beum
    Kim, Han-Jun
    Kim, Won Jong
    Kwon, Il Keun
    Heo, Dong Nyoung
    [J]. BIOFABRICATION, 2023, 15 (03)
  • [35] 3D Printing for Bone-Cartilage Interface Regeneration
    Xu, Jialian
    Ji, Jindou
    Jiao, Juyang
    Zheng, Liangjun
    Hong, Qimin
    Tang, Haozheng
    Zhang, Shutao
    Qu, Xinhua
    Yue, Bing
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [36] Dual 3D printing for vascularized bone tissue regeneration
    Hann, Sung Yun
    Cui, Haitao
    Esworthy, Timothy
    Zhou, Xuan
    Lee, Se-jun
    Plesniak, Michael W.
    Zhang, Lijie Grace
    [J]. ACTA BIOMATERIALIA, 2021, 123 : 263 - 274
  • [37] Fabrication of 3D Nano-Hydroxyapatite/Gelatin/Glycerol Scaffold Using Dual 3D Printing System for Bone Tissue Regeneration
    Kim, D. Y.
    Choe, Y. E.
    Yeo, M. J.
    Lee, J. Y.
    Kim, W. J.
    Lee, J.
    Kim, H.
    Chae, S. J.
    Hong, J. Y.
    Kim, J. Y.
    Kim, G. H.
    [J]. 2019 13TH IEEE INTERNATIONAL CONFERENCE ON NANO/MOLECULAR MEDICINE & ENGINEERING (IEEE-NANOMED 2019), 2019, : 103 - 103
  • [38] Advances in the Fabrication of Scaffold and 3D Printing of Biomimetic Bone Graft
    Bharti Bisht
    Ashley Hope
    Anubhab Mukherjee
    Manash K. Paul
    [J]. Annals of Biomedical Engineering, 2021, 49 : 1128 - 1150
  • [39] 3D printing of PEEK–cHAp scaffold for medical bone implant
    Bankole I. Oladapo
    S. Abolfazl Zahedi
    Sikiru O. Ismail
    Francis T. Omigbodun
    Oluwole K. Bowoto
    Mattew A. Olawumi
    Musa A. Muhammad
    [J]. Bio-Design and Manufacturing, 2021, 4 : 44 - 59
  • [40] Advances in the Fabrication of Scaffold and 3D Printing of Biomimetic Bone Graft
    Bisht, Bharti
    Hope, Ashley
    Mukherjee, Anubhab
    Paul, Manash K.
    [J]. ANNALS OF BIOMEDICAL ENGINEERING, 2021, 49 (04) : 1128 - 1150