Bioactive Scaffold Fabricated by 3D Printing for Enhancing Osteoporotic Bone Regeneration

被引:7
|
作者
Zhang, Xiaoting [1 ,2 ]
Wang, Xinluan [3 ]
Lee, Yuk-wai [4 ,5 ,6 ]
Feng, Lu [1 ,2 ]
Wang, Bin [1 ,2 ]
Pan, Qi [1 ,2 ]
Meng, Xiangbo [3 ]
Cao, Huijuan [3 ]
Li, Linlong [1 ,2 ]
Wang, Haixing [1 ,2 ]
Bai, Shanshan [1 ,2 ]
Kong, Lingchi [1 ,2 ]
Chow, Dick Ho Kiu [1 ,2 ]
Qin, Ling [1 ,2 ]
Cui, Liao [7 ,8 ]
Lin, Sien [1 ,2 ]
Li, Gang [1 ,2 ]
机构
[1] Chinese Univ Hong Kong, Prince Wales Hosp, Dept Orthopaed & Traumatol, Musculoskeletal Res Lab, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, Prince Wales Hosp, Li Ka Shing Inst Hlth Sci, Stem Cells & Regenerat Med Lab, Hong Kong, Peoples R China
[3] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[4] Chinese Univ Hong Kong, Dept Orthopaed & Traumatol, SH Ho Scoliosis Res Lab, Hong Kong, Peoples R China
[5] Chinese Univ Hong Kong, Joint Scoliosis Res Ctr Chinese Univ Hong Kong &, Hong Kong, Peoples R China
[6] Chinese Univ Hong Kong, Li Ka Shing Inst Hlth Sci, Hong Kong, Peoples R China
[7] Guangdong Med Univ, Sch Pharm, Zhanjiang 524023, Peoples R China
[8] Guangdong Med Univ, Guangdong Key Lab Res & Dev Nat Drugs, Zhanjiang 524023, Peoples R China
来源
BIOENGINEERING-BASEL | 2022年 / 9卷 / 10期
基金
中国国家自然科学基金;
关键词
osteoporotic bone regeneration; PLGA; TCP; icaritin; secretome; additive effect; focal adhesion signalling;
D O I
10.3390/bioengineering9100525
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We develop a poly (lactic-co-glycolic acid)/beta-calcium phosphate (PLGA/TCP)-based scaffold through a three-dimensional (3D) printing technique incorporating icaritin (ICT), a unique phytomolecule, and secretome derived from human fetal mesenchymal stem cells (HFS), to provide mechanical support and biological cues for stimulating bone defect healing. With the sustained release of ICT and HFS from the composite scaffold, the cell-free scaffold efficiently facilitates the migration of MSCs and promotes bone regeneration at the femoral defect site in the ovariectomy (OVX)-induced osteoporotic rat model. Furthermore, mechanism study results indicate that the combination of ICT and HFS additively activates the Integrin-FAK (focal adhesion kinase)-ERK1/2 (extracellular signal-regulated kinase 1/2)-Runx2 (Runt-related transcription factor 2) axis, which could be linked to the beneficial recruitment of MSCs to the implant and subsequent osteogenesis enhancement. Collectively, the PLGA/TCP/ICT/HFS (P/T/I/S) bioactive scaffold is a promising biomaterial for repairing osteoporotic bone defects, which may have immense implications for their translation to clinical practice.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] 3D printing of lithium osteogenic bioactive composite scaffold for enhanced bone regeneration
    Wang, Wenzhao
    Wei, Jianlu
    Lei, Dong
    Wang, Suning
    Zhang, Boqing
    Shang, Shenghui
    Bai, Baoshuai
    Zhao, Chenxi
    Zhang, Wencan
    Zhou, Changchun
    Zhou, Hengxing
    Feng, Shiqing
    [J]. COMPOSITES PART B-ENGINEERING, 2023, 256
  • [2] Development of 3D Bioactive Composite Scaffold for Bone Regeneration
    Li, J.
    Habibovic, P.
    Moroni, L.
    [J]. TISSUE ENGINEERING PART A, 2017, 23 : S90 - S90
  • [3] Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration
    Wang, Zhen
    Wang, Yichuan
    Yan, Jiaqi
    Zhang, Keshi
    Lin, Feng
    Xiang, Lei
    Deng, Lianfu
    Guan, Zhenpeng
    Cui, Wenguo
    Zhang, Hongbo
    [J]. ADVANCED DRUG DELIVERY REVIEWS, 2021, 174 (174) : 504 - 534
  • [4] A 3D Printing Scaffold Using Alginate/Hydroxyapatite for Application in Bone Regeneration
    Alves, Bruno C.
    Miranda, Renato de S.
    Frigieri, Barbara M.
    Zuccari, Debora A. P. C.
    de Moura, Marcia R.
    Aouada, Fauze A.
    Tokimatsu, Ruis C.
    [J]. MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2023, 26
  • [5] 3D Printing for Bone Regeneration
    Amit Bandyopadhyay
    Indranath Mitra
    Susmita Bose
    [J]. Current Osteoporosis Reports, 2020, 18 : 505 - 514
  • [6] 3D Printing for Bone Regeneration
    Bandyopadhyay, Amit
    Mitra, Indranath
    Bose, Susmita
    [J]. CURRENT OSTEOPOROSIS REPORTS, 2020, 18 (05) : 505 - 514
  • [7] Efficacy of rhBMP-2 Loaded PCL/β-TCP/bdECM Scaffold Fabricated by 3D Printing Technology on Bone Regeneration
    Bae, Eun-Bin
    Park, Keun-Ho
    Shim, Jin-Hyung
    Chung, Ho-Yun
    Choi, Jae-Won
    Lee, Jin-Ju
    Kim, Chang-Hwan
    Jeon, Ho-Jun
    Kang, Seong-Soo
    Huh, Jung-Bo
    [J]. BIOMED RESEARCH INTERNATIONAL, 2018, 2018
  • [8] Fishnet-Inspired 3D Scaffold Fabricated from Mesh-like Electrospun Membranes Promoted Osteoporotic Bone Regeneration
    Xiao, Lingfei
    Liu, Huifan
    Wu, Shujuan
    Huang, Huayi
    Xie, Yuanlong
    Wei, Renxiong
    Lei, Jun
    Lei, Yifeng
    Xue, Longjian
    Yan, Feifei
    Geng, Zhen
    Cai, Lin
    [J]. ADVANCED FIBER MATERIALS, 2024,
  • [9] 3D PRINTING PLATFORM FOR PERSONALIZED BIOACTIVE AND BIODEGRADABLE IMPLANTS FOR MAXILLARY BONE REGENERATION
    Rey-Vinolas, Sergi
    Perez-Amodio, Soledad
    Mateos-Timoneda, Miguel A.
    Engel, Elisabeth
    [J]. TISSUE ENGINEERING PART A, 2022, 28 : S338 - S338
  • [10] 3D printing of personalized magnesium composite bone tissue engineering scaffold for bone and angiogenesis regeneration
    Wang, Wenzhao
    Wang, Ling
    Zhang, Boqing
    Shang, Shenghui
    Zhao, Chenxi
    Zhang, Wencan
    Chen, Jing
    Zhou, Changchun
    Zhou, Hengxing
    Feng, Shiqing
    [J]. CHEMICAL ENGINEERING JOURNAL, 2024, 484