On weighting two criteria with a parameter in combinatorial optimization problems

被引:3
|
作者
Duin, C. W. [1 ]
Volgenant, A. [1 ]
机构
[1] Univ Amsterdam, Operat Res Grp, Fac Econ & Econometr, NL-1018 XE Amsterdam, Netherlands
关键词
Bicriteria combinatorial problems; Spanning tree; Linear assignment; Single machine scheduling; ALGORITHM; LATENESS; RANGE;
D O I
10.1016/j.ejor.2012.01.054
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Two criteria in a combinatorial problem are often combined in a weighted sum objective using a weighting parameter between 0 and 1. For special problem types, e.g., when one of the criteria is a bottleneck value, efficient algorithms are known that solve for a given value of the weighting parameter. We transform the underlying enumeration method into a parametric algorithm solving simultaneously for all values of the weighting parameter. Efficient implementations are presented for combinatorial problems with criteria as balanced optimization, min-sum with min-max, and min-sum with balanced optimization, considering the spanning tree, the linear assignment and the single machine scheduling problem. Further the new algorithmic scheme can easily incorporate a trade-off of the criteria by means of penalty functions, again without consequences for the algorithm and its complexity order. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [21] Evaluation of Disturbance Weighting Parameter of Minimax Attenuation Problems
    Aldemir, Unal
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2009, 24 (04) : 302 - 308
  • [22] Evaluating solution sets of a posteriori solution techniques for bi-criteria combinatorial optimization problems
    Fowler, JW
    Kim, B
    Carlyle, WM
    Gel, ES
    Horng, SM
    JOURNAL OF SCHEDULING, 2005, 8 (01) : 75 - 96
  • [23] Evaluating solution sets of a posteriori solution techniques for bi-criteria combinatorial optimization problems
    John W. Fowler
    Bosun Kim
    W. Matthew Carlyle
    Esma Senturk Gel
    Shwu-Min Horng
    Journal of Scheduling, 2005, 8 : 75 - 96
  • [24] Min-Max and Two-Stage Possibilistic Combinatorial Optimization Problems
    Kasperski, Adam
    Zielinski, Pawel
    IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 2650 - 2655
  • [25] Stability in the combinatorial vector optimization problems
    Emelichev, VA
    Kuz'min, KG
    Leonovich, AM
    AUTOMATION AND REMOTE CONTROL, 2004, 65 (02) : 227 - 240
  • [26] Combinatorial Optimization Problems in Ultrametric Spaces
    M. D. Missarov
    R. G. Stepanov
    Theoretical and Mathematical Physics, 2003, 136 : 1037 - 1047
  • [28] Recoverable Robust Combinatorial Optimization Problems
    Kasperski, Adam
    Kurpisz, Adam
    Zielinski, Pawel
    OPERATIONS RESEARCH PROCEEDINGS 2012, 2014, : 147 - 153
  • [29] Stability in the Combinatorial Vector Optimization Problems
    V. A. Emelichev
    K. G. Kuz'min
    A. M. Leonovich
    Automation and Remote Control, 2004, 65 : 227 - 240
  • [30] Artificial Intelligence Problems and Combinatorial Optimization
    Timofieva, N. K.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2023, 59 (04) : 511 - 518