On weighting two criteria with a parameter in combinatorial optimization problems

被引:3
|
作者
Duin, C. W. [1 ]
Volgenant, A. [1 ]
机构
[1] Univ Amsterdam, Operat Res Grp, Fac Econ & Econometr, NL-1018 XE Amsterdam, Netherlands
关键词
Bicriteria combinatorial problems; Spanning tree; Linear assignment; Single machine scheduling; ALGORITHM; LATENESS; RANGE;
D O I
10.1016/j.ejor.2012.01.054
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Two criteria in a combinatorial problem are often combined in a weighted sum objective using a weighting parameter between 0 and 1. For special problem types, e.g., when one of the criteria is a bottleneck value, efficient algorithms are known that solve for a given value of the weighting parameter. We transform the underlying enumeration method into a parametric algorithm solving simultaneously for all values of the weighting parameter. Efficient implementations are presented for combinatorial problems with criteria as balanced optimization, min-sum with min-max, and min-sum with balanced optimization, considering the spanning tree, the linear assignment and the single machine scheduling problem. Further the new algorithmic scheme can easily incorporate a trade-off of the criteria by means of penalty functions, again without consequences for the algorithm and its complexity order. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [1] ON COMBINATORIAL OPTIMIZATION PROBLEMS
    Sharifov, F. A.
    PROCEEDINGS OF THE7TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL. 1, 2020, : 377 - 379
  • [2] Interactive resolution of multiobjective combinatorial optimization problems by incremental elicitation of criteria weights
    Benabbou, Nawal
    Perny, Patrice
    EURO JOURNAL ON DECISION PROCESSES, 2018, 6 (3-4) : 283 - 319
  • [3] Two-stage combinatorial optimization problems under risk
    Goerigk, Marc
    Kasperski, Adam
    Zielinski, Pawel
    THEORETICAL COMPUTER SCIENCE, 2020, 804 : 29 - 45
  • [4] Two examples of distributed architecture for solving combinatorial optimization problems
    Achasova, SM
    PARALLEL COMPUTING TECHNOLOGIES, 1999, 1662 : 335 - 338
  • [5] VECTOR OPTIMIZATION PROBLEMS WITH LINEAR CRITERIA OVER A FUZZY COMBINATORIAL SET OF ALTERNATIVES
    Semenova, N. V.
    Kolechkina, L. N.
    Nagirna, A. M.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2011, 47 (02) : 250 - 259
  • [6] A new technique to compare algorithms for bi-criteria combinatorial optimization problems
    Kim, B
    Gel, ES
    Carlyle, WM
    Fowler, JW
    MULTIPLE CRITERIA DECISION MAKING IN THE NEW MILLENNIUM, 2001, 507 : 113 - 123
  • [7] ON THE USE OF A RANDOM PARAMETER IN COMBINATORIAL PROBLEMS
    DOMB, C
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION A, 1952, 65 (389): : 305 - 309
  • [8] ON THE USE OF A RANDOM PARAMETER IN COMBINATORIAL PROBLEMS
    DOMB, C
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION B, 1952, 65 (389): : 395 - 395
  • [9] On Possibilistic Combinatorial Optimization Problems
    Kasperski, Adam
    Zielinski, Pawel
    2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 324 - +
  • [10] On the Landscape of Combinatorial Optimization Problems
    Tayarani-N, Mohammad-H.
    Pruegel-Bennett, Adam
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014, 18 (03) : 420 - 434