Hierarchical text categorization using neural networks

被引:164
|
作者
Ruiz, ME [1 ]
Srinivasan, P [1 ]
机构
[1] Univ Iowa, Sch Lib & Informat Sci, Main Lib 3087, Iowa City, IA 52242 USA
来源
INFORMATION RETRIEVAL | 2002年 / 5卷 / 01期
关键词
automatic text categorization; applied neural networks; hierarchical classifiers;
D O I
10.1023/A:1012782908347
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents the design and evaluation of a text categorization method based on the Hierarchical Mixture of Experts model. This model uses a divide and conquer principle to define smaller categorization problems based on a predefined hierarchical structure. The final classifier is a hierarchical array of neural networks. The method is evaluated using the UMLS Metathesaurus as the underlying hierarchical structure, and the OHSUMED test set of MEDLINE records. Comparisons with an optimized version of the traditional Rocchio's algorithm adapted for text categorization, as well as flat neural network classifiers are provided. The results show that the use of the hierarchical structure improves text categorization performance with respect to an equivalent flat model. The optimized Rocchio algorithm achieves a performance comparable with that of the hierarchical neural networks.
引用
收藏
页码:87 / 118
页数:32
相关论文
共 50 条
  • [31] Hierarchical text categorization through a vertical composition of classifiers
    Addis, Andrea
    Armano, Giuliano
    Mascia, Francesco
    Vargm, Eloisa
    AI(ASTERISK)IA 2007: ARTIFICIAL INTELLIGENCE AND HUMAN-ORIENTED COMPUTING, 2007, 4733 : 742 - 748
  • [32] Hierarchical Persian Text Categorization in Absence of Labeled Data
    Masoudian, Soheila
    Derhami, Vali
    Zarifzadeh, Sajjad
    2019 27TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2019), 2019, : 1951 - 1955
  • [33] Boosting multi-label hierarchical text categorization
    Esuli, Andrea
    Fagni, Tiziano
    Sebastiani, Fabrizio
    INFORMATION RETRIEVAL, 2008, 11 (04): : 287 - 313
  • [34] Boosting multi-label hierarchical text categorization
    Andrea Esuli
    Tiziano Fagni
    Fabrizio Sebastiani
    Information Retrieval, 2008, 11 : 287 - 313
  • [35] CATEGORIZATION IN NEURAL NETWORKS AND PROSOPAGNOSIA
    VIRASORO, MA
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1989, 184 (2-4): : 301 - 306
  • [36] Semi-supervised Convolutional Neural Networks for Text Categorization via Region Embedding
    Johnson, Rie
    Zhang, Tong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [37] Ensemble Application of Convolutional and Recurrent Neural Networks for Multi-label Text Categorization
    Chen, Guibin
    Ye, Deheng
    Xing, Zhenchang
    Chen, Jieshan
    Cambria, Erik
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 2377 - 2383
  • [38] Using WordNet for text categorization
    Elberrichi, Zakaria
    Rahmoun, Abdelattif
    Bentaalah, Mohamed Amine
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2008, 5 (01) : 16 - 24
  • [39] Hierarchical taxonomy preparation for text categorization using consistent bipartite spectral graph copartitioning
    Gao, B
    Liu, TY
    Feng, G
    Qin, T
    Cheng, QS
    Ma, WY
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (09) : 1263 - 1273
  • [40] Using SVMs for text categorization
    Dumais, S
    IEEE INTELLIGENT SYSTEMS & THEIR APPLICATIONS, 1998, 13 (04): : 21 - 23