ELECTRICAL DISCHARGE MACHINING OF SiC & Gr REINFORCED 6061-T6 ALUMINUM ALLOY HYBRID COMPOSITE FABRICATED BY FRICTION STIR PROCESSING

被引:0
|
作者
Kolli, Murahari [1 ]
Aruri, Devaraj [1 ]
Adepu, Kumar [1 ]
机构
[1] Natl Inst Technol, Dept Mech Engn, Warangal 506004, Andhra Pradesh, India
关键词
ELECTRODE; EDM;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Aluminum based hybrid composites are advanced materials having the properties of high hardness, superior wear resistance, strength, high elevated temperature and low thermal expansion co-efficient. These hybrid composites are widely used in industries like automobile and aerospace. In this present paper 6061-T6 Aluminum alloy reinforced with SiC and Gr particles, hybrid composites are fabricated by using Friction stir processing (FSP) technique. It prevents the further development of hybrid composites for machining by nonconventional methods like water jet and laser cutting process. Electrical discharge machining (EDM) is used for machining the complex shapes of the material. This paper presents an overview of EDM studies conducted on the Al-SiC/Gr hybrid composites using a copper electrode in EDM. The EDM experiment machining parameters such as the dielectric fluid, peak current, pulse on, pulse off times are changed to explore their effects on machining performance, material removal rate (MRR), Tool wear rate (TWR), and surface roughness (SR). It is observed that the MRR and SR of the Al-SiC/Gr hybrid composites increase with an increase in the current.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] FRICTION STIR WELDING OF ALUMINUM 6061-T6 AND MULTI-PURPOSE COPPER 11000 ALLOY
    Payton, Lewis N.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2017, VOL 2, 2018,
  • [22] Microstructure in friction-stir welded dissimiliar magnesium alloys to 6061-T6 aluminum alloy
    Somasekharan, AC
    Murr, LE
    MATERIALS CHARACTERIZATION, 2004, 52 (01) : 49 - 64
  • [23] Experimental investigation of weld characteristics on submerged friction stir welded 6061-T6 aluminum alloy
    Rathinasuriyan, C.
    Kumar, V. S. Senthil
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2017, 31 (08) : 3925 - 3933
  • [24] Thermal and thermo-mechanical modeling of friction stir welding of aluminum alloy 6061-T6
    Chao, Yuh J.
    Qi, Xinhai
    Journal of Materials Processing and Manufacturing Science, 1998, 7 (02): : 215 - 233
  • [25] Mechanisms of abnormal grain growth in friction-stir-welded aluminum alloy 6061-T6
    Kalinenko, Alexander
    Mishin, Vasiliy
    Shishov, Ivan
    Malopheyev, Sergey
    Zuiko, Ivan
    Novikov, Vseslav
    Mironov, Sergey
    Kaibyshev, Rustam
    Semiatin, Sheldon Lee
    MATERIALS CHARACTERIZATION, 2022, 194
  • [26] Experimental investigation of weld characteristics on submerged friction stir welded 6061-T6 aluminum alloy
    C. Rathinasuriyan
    V. S. Senthil Kumar
    Journal of Mechanical Science and Technology, 2017, 31 : 3925 - 3933
  • [27] EXPERIMENTAL INVESTIGATION OF HARDNESS AND SURFACE ROUGHNESS IN THE FRICTION STIR WELDING OF THE 6061-T6 ALUMINUM ALLOY
    Bouamama, Mohamed
    Belaziz, Azzeddine
    Elmeiche, Abbes
    Elmeguenni, Imane
    Elhannani, Abdelhak
    HUNGARIAN JOURNAL OF INDUSTRY AND CHEMISTRY, 2024, 52 (01): : 37 - 43
  • [28] Microstructural aspects of the friction-stir welding of 6061-T6 aluminum
    Liu, G
    Murr, LE
    Niou, CS
    McClure, JC
    Vega, FR
    SCRIPTA MATERIALIA, 1997, 37 (03) : 355 - 361
  • [29] Friction stir welding of aluminum alloys 6061-T6 and 6101-T6
    Hamilton, Carter
    Dymek, Stanislaw
    ALUMINUM ALLOYS FOR TRANSPORTATION, PACKAGING, AEROSPACE AND OTHER APPLICATIONS, 2007, : 125 - +
  • [30] Micro friction stir welding technology of 6061-T6 aluminum alloys
    Zhang D.
    Xia P.
    Cui F.
    Yin Y.
    Hanjie Xuebao/Transactions of the China Welding Institution, 2019, 40 (03): : 102 - 106