Electronic Structures of Formic Acid (HCOOH) and Formate (HCOO-) in Aqueous Solutions

被引:35
|
作者
Brown, Matthew A. [1 ]
Vila, Fernando [2 ]
Sterrer, Martin [3 ]
Thuermer, Stephan [4 ,5 ]
Winter, Bernd [4 ,5 ]
Ammann, Markus [6 ]
Rehr, John J. [2 ]
van Bokhoven, Jeroen A. [1 ,7 ]
机构
[1] ETH, Inst Chem & Bioengn, CH-8093 Zurich, Switzerland
[2] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[3] Max Planck Gesell, Fritz Haber Inst, Dept Chem Phys, D-14195 Berlin, Germany
[4] Helmholtz Zentrum Berlin Mat & Energie, D-12489 Berlin, Germany
[5] BESSY, D-12489 Berlin, Germany
[6] Paul Scherrer Inst, Lab Radiochem & Environm Chem, CH-5232 Villigen, Switzerland
[7] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland
来源
关键词
X-RAY-ABSORPTION; CARBOXYLIC-ACIDS; LIQUID/VAPOR INTERFACE; CAR-PARRINELLO; BASIS-SETS; IN-SITU; SPECTROSCOPY; DECOMPOSITION; APPROXIMATION; PHOTOEMISSION;
D O I
10.1021/jz300510r
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electronic structures of formic acid (HCOOH) and formate (HCOO-) have been determined in aqueous solutions over a pH range of 1.88-8.87 using a combination of X-ray photoelectron spectroscopy (XPS), partial electron-yield X-ray absorption spectroscopy (PEY XAS), and density functional theory (DFT). The carbon Is XPS measurements reveal a binding energy shift of -1.3 eV for deprotonated HCOO compared with neutral HCOOH. Such distinction between neutral HCOOH and deprotonated HCOO- cannot be made based solely on the respective carbon K-edge PEY XA spectra. Independent of pH, the C1s -> pi* state excitations occur at 288.0 eV and may lead to the incorrect conclusion that the energy levels of the pi* state are the same for both species. The DFT calculations are consistent with the experimental observations and show a shift to higher energy for both the occupied C1s (lower binding energy) and unoccupied pi* orbitals of deprotonated HCOO- compared to neutral HCOOH in aqueous solutions.
引用
收藏
页码:1754 / 1759
页数:6
相关论文
共 50 条
  • [31] REACTION OF RU(II)-EDTA IN SODIUM FORMATE-FORMIC ACID-SOLUTIONS
    SHIMIZU, K
    [J]. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 1977, 50 (11) : 2921 - 2926
  • [32] Electrospun silk fibroin using aqueous and formic acid solutions
    Maria Vallejo-Martinez
    Melissa Puerta
    Adriana Restrepo-Osorio
    [J]. MRS Advances, 2021, 6 : 975 - 979
  • [33] Kinetics of mild steel corrosion in aqueous formic acid solutions
    Singh, S. K.
    Mukherjee, A. K.
    Singh, M. M.
    [J]. CANADIAN METALLURGICAL QUARTERLY, 2011, 50 (02) : 186 - 194
  • [34] SOLUBILITY OF BISMUTH FORMATE IN FORMIC-ACID AQUEOUS-SOLUTIONS AT 25-DEGREES-C AND 50-DEGREES-C
    CHAPLYGINA, NM
    ITKINA, LS
    [J]. ZHURNAL NEORGANICHESKOI KHIMII, 1981, 26 (11): : 3118 - 3120
  • [35] Efficient Low-Temperature H2 Production from HCOOH/HCOO- by [Pd0@SiO2-Gallic Acid] Nanohybrids: Catalysis and the Underlying Thermodynamics and Mechanism
    Stathi, Panagiota
    Louloudi, Maria
    Deligiannakis, Yiannis
    [J]. ENERGY & FUELS, 2016, 30 (10) : 8613 - 8622
  • [36] KINETICS OF DECARBONYLATION OF FORMIC-ACID IN AQUEOUS SULFURIC-ACID SOLUTIONS
    POPKOVA, IA
    VINNIK, MI
    KOZLOV, VA
    [J]. KINETICS AND CATALYSIS, 1980, 21 (02) : 279 - 285
  • [37] DECARBONYLATION KINETICS OF FORMIC-ACID IN AQUEOUS SULFURIC-ACID SOLUTIONS
    CIUHANDU, G
    DUMITREANU, A
    SIMON, Z
    [J]. JOURNAL FUR PRAKTISCHE CHEMIE, 1976, 318 (02): : 202 - 206
  • [38] HYDROLYSIS OF FORMIC-ACID ESTERS IN STRONG ACID AQUEOUS-SOLUTIONS
    LIBROVICH, NB
    VINNIK, MI
    [J]. ZHURNAL FIZICHESKOI KHIMII, 1979, 53 (12): : 2993 - 3002
  • [39] HYDROGEN DEUTERIUM EXCHANGE IN AQUEOUS SOLUTIONS OF GLYCOLLIC ACID AND OF SODIUM FORMATE
    BOK, LDC
    PETTERS, LB
    [J]. JOURNAL OF THE CHEMICAL SOCIETY, 1952, (APR): : 1524 - 1525
  • [40] Hydrogen peroxide yields in the radiolysis of aerated aqueous solutions of formic acid
    Kartasheva, LI
    Chulkov, VN
    Didenko, OA
    Pikaev, AK
    [J]. HIGH ENERGY CHEMISTRY, 2000, 34 (06) : 409 - 411