Remarks on complete noncompact Einstein warped products

被引:0
|
作者
Batista, R. [1 ]
Ranieri, M. [2 ]
Ribeiro, E., Jr. [3 ]
机构
[1] Univ Fed Piaui UFPI, Dept Matemat, Campus Petronio Portella, BR-64049550 Teresina, PI, Brazil
[2] Univ Fed Alagoas UFAL, Inst Matemat, BR-57072970 Maceio, AL, Brazil
[3] Univ Fed Ceara UFC, Dept Matemat, Campus Pici,Av Humberto Monte,Bloco 914, BR-60455760 Fortaleza, CE, Brazil
关键词
SPLITTING THEOREM; MANIFOLDS; METRICS; SPACES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this article is to investigate the structure of complete non-compact quasi-Einstein manifolds. We show that complete noncompact quasi-Einstein manifolds with lambda = 0 are connected at infinity. In addition, we provide some conditions under which quasi-Einstein manifolds with lambda < 0 are f-non-parabolic. In particular, we obtain estimates on volume growth of geodesic balls for such manifolds.
引用
收藏
页码:547 / 563
页数:17
相关论文
共 50 条
  • [41] REMARKS ON NONCOMPACT SIGMA-MODELS
    BRUNINI, SA
    GOMES, M
    DASILVA, AJ
    PHYSICAL REVIEW D, 1988, 38 (02): : 706 - 709
  • [42] On the Stability and Parabolicity of Complete f-Minimal Hypersurfaces in Weighted Warped Products
    Eudes L. de Lima
    Henrique F. de Lima
    Fábio R. dos Santos
    Results in Mathematics, 2018, 73
  • [43] Einstein Statistical Warped Product Manifolds
    Aytimur, Hulya
    Ozgur, Cihan
    FILOMAT, 2018, 32 (11) : 3891 - 3897
  • [44] On Einstein Sequential Warped Product Spaces
    Pahan, Sampa
    Pal, Buddhadev
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2019, 15 (03) : 379 - 394
  • [45] On the Stability and Parabolicity of Complete f-Minimal Hypersurfaces in Weighted Warped Products
    de Lima, Eudes L.
    de Lima, Henrique F.
    dos Santos, Fabio R.
    RESULTS IN MATHEMATICS, 2018, 73 (01)
  • [46] Complete noncompact Spin(7) manifolds from self-dual Einstein 4-orbifolds
    Foscolo, Lorenzo
    GEOMETRY & TOPOLOGY, 2021, 25 (01) : 339 - 408
  • [47] Compact Einstein warped product manifolds
    Diallo A.S.
    Afrika Matematika, 2014, 25 (2) : 267 - 270
  • [48] Einstein Hypersurfaces of Warped Product Spaces
    de Lima, R. F.
    Manfio, F.
    dos Santos, J. P.
    RESULTS IN MATHEMATICS, 2022, 77 (06)
  • [49] WARPED EMBEDDINGS BETWEEN EINSTEIN MANIFOLDS
    Yang, Huan-Xiong
    Zhao, Liu
    MODERN PHYSICS LETTERS A, 2010, 25 (18) : 1521 - 1530
  • [50] Einstein Hypersurfaces of Warped Product Spaces
    R. F. de Lima
    F. Manfio
    J. P. dos Santos
    Results in Mathematics, 2022, 77