Protein Secondary Structure Prediction Based on Deep Learning

被引:0
|
作者
Zheng, Lin [1 ]
Li, Hong-ling [1 ]
Wu, Nan [1 ]
Ao, Li [2 ]
机构
[1] Yunnan Univ, Coll Informat, Kunming, Yunnan, Peoples R China
[2] Yunnan Univ, Coll Software, Kunming, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Computational biology; Deep learning; Protein secondary structure;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Prediction of protein secondary structure from the amino acid sequence is a classical bioinformatics problem in computational biology. For accurate predicting the sequence-structure mapping relationship between protein secondary structure and features, a novel deep learning prediction model is proposed by combining convolutional neural network (CNN) and bi-directional recurrent neural network (BRNN) with long short-term memory cells (Bi-directional LSTM RNN). In order to draw eight classes (Q8) protein secondary structure prediction results, we first utilize CNN to filter and sample amino acid sequences, and then use Bi-directional LSTM RNN to model context information interaction between amino acids in protein. Experimental results show that the prediction accuracy of the proposed model is about 1-3% higher than that of the existing prediction models, and the prediction accuracy of 69.4% is obtained.
引用
收藏
页码:171 / 177
页数:7
相关论文
共 50 条
  • [1] A Deep Learning Approach for Prediction of Protein Secondary Structure
    Zubair, Muhammad
    Hanif, Muhammad Kashif
    Alabdulkreem, Eatedal
    Ghadi, Yazeed
    Khan, Muhammad Irfan
    Sarwar, Muhammad Umer
    Hanif, Ayesha
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (02): : 3705 - 3718
  • [2] Protein secondary structure prediction by using deep learning method
    Wang, Yangxu
    Mao, Hua
    Yi, Zhang
    KNOWLEDGE-BASED SYSTEMS, 2017, 118 : 115 - 123
  • [3] Deep metric learning for accurate protein secondary structure prediction
    Yang, Wei
    Liu, Yang
    Xiao, Chunjing
    KNOWLEDGE-BASED SYSTEMS, 2022, 242
  • [4] Protein Secondary Structure Prediction With a Reductive Deep Learning Method
    Lyu, Zhiliang
    Wang, Zhijin
    Luo, Fangfang
    Shuai, Jianwei
    Huang, Yandong
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9
  • [5] OneHotEncoding and LSTM-based deep learning models for protein secondary structure prediction
    Vamsidhar Enireddy
    C. Karthikeyan
    D. Vijendra Babu
    Soft Computing, 2022, 26 : 3825 - 3836
  • [6] OneHotEncoding and LSTM-based deep learning models for protein secondary structure prediction
    Enireddy, Vamsidhar
    Karthikeyan, C.
    Babu, D. Vijendra
    SOFT COMPUTING, 2022, 26 (08) : 3825 - 3836
  • [7] A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction
    Spencer, Matt
    Eickholt, Jesse
    Cheng, Jianlin
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2015, 12 (01) : 103 - 112
  • [8] Protein secondary structure prediction using neural networks and deep learning: A review
    Wardah, Wafaa
    Khan, M. G. M.
    Sharma, Alok
    Rashid, Mahmood A.
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2019, 81 : 1 - 8
  • [9] Deep learning for protein secondary structure prediction: Pre and post-AlphaFold
    Ismi, Dewi Pramudi
    Pulungan, Reza
    Afiahayatia
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 6271 - 6286
  • [10] Template-based prediction of protein structure with deep learning
    Haicang Zhang
    Yufeng Shen
    BMC Genomics, 21