Interactive impacts of nitrogen input and water amendment on growing season fluxes of CO2, CH4, and N2O in a semiarid grassland, Northern China

被引:38
|
作者
Zhang, Lihua [1 ]
Hou, Longyu [2 ]
Guo, Dufa [3 ]
Li, Linghao [1 ]
Xu, Xiaofeng [4 ,5 ]
机构
[1] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China
[2] China Agr Univ, Dept Grassland Sci, Beijing 100193, Peoples R China
[3] Shandong Normal Univ, Jinan 250014, Peoples R China
[4] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA
[5] Chinese Acad Sci, NorthEast Inst Geol & Agroecol, Changchun, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Greenhouse gas; Interactive impacts; Nitrogen input; Water amendment; CARBON-DIOXIDE FLUXES; INNER-MONGOLIA; OXIDE EMISSIONS; ECOSYSTEM RESPIRATION; MICROBIAL BIOMASS; SOIL RESPIRATION; TEMPERATE STEPPE; ALPINE GRASSLAND; METHANE FLUXES; CLIMATE-CHANGE;
D O I
10.1016/j.scitotenv.2016.10.219
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Nitrogen and water are two important factors influencing GHG (primarily CO2 - carbon dioxide; CH4 - methane, and N2O - nitrous oxide) fluxes in semiarid grasslands. However, the interactive effects of nitrogen and water on GHG fluxes remain elusive. A 3-year (2010-2012) manipulative experiment was conducted to investigate the individual and interactive effects of nitrogen and water additions on GHG fluxes during growing seasons (May to September) in a semiarid grassland in Northern China. Accumulated throughout growing seasons, nitrogen input stimulated CO2 uptake by 33 +/- 1.0 g C m(-2) (g N)(-1), enhanced N2O emission by 1.2 +/- 0.3 mg N m(-2) (g N)(-1), and decreased CH4 uptake by 5.2 +/- 0.9 mg N m(-2) (g N)(-1); water amendment stimulated CO2 uptake by 0.2 +/- 0.1 g Cm-2 (mm H2O)(-1) and N2O emission by 0.2 +/- 0.02 mg N m(-2) (mm H2O)(-1) , decreased CH4 uptake by 0.3 +/- 0.1 mg C m(-2) (mm H2O)(-1). A synergistic effect between nitrogen and water was found on N2O flux in normal year while the additive effects of nitrogen and water additions were found on CH4 and CO2 uptakes during all experiment years, and on N2O-emission in dry years. The nitrogen addition had stronger impacts than water amendment on stimulating CH4 uptake in the normal year, while water was the dominant factor affecting CH4 uptake in dry years. For N2O emission, the N-stimulating impact was stronger in un-watered than in watered plots, and the water-stimulating impact was stronger in non-fertilized than in fertilized treatments in dry years. The interactive impacts of nitrogen and water additions on GHG fluxes advance our understanding of GHG fluxes in responses to multiple environmental factors. This data source could be valuable for validating ecosystem models in simulating GHG fluxes in a multiple factors environment. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:523 / 534
页数:12
相关论文
共 50 条
  • [41] Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands
    Alm, J
    Saarnio, S
    Nykänen, H
    Silvola, J
    Martikainen, PJ
    BIOGEOCHEMISTRY, 1999, 44 (02) : 163 - 186
  • [42] Fluxes of CO2, CH4 and N2O from drained coniferous forests on organic soils
    Von Arnold, K
    Weslien, P
    Nilsson, M
    Svensson, BH
    Klemedtsson, L
    FOREST ECOLOGY AND MANAGEMENT, 2005, 210 (1-3) : 239 - 254
  • [43] The impact of ploughing intensively managed temperate grasslands on N2O, CH4 and CO2 fluxes
    J. Drewer
    M. Anderson
    P.E. Levy
    B. Scholtes
    C. Helfter
    J. Parker
    R.M. Rees
    U.M. Skiba
    Plant and Soil, 2017, 411 : 193 - 208
  • [44] Liming practice in temperate forest ecosystems and the effects on CO2, N2O and CH4 fluxes
    Borken, W
    Brumme, R
    SOIL USE AND MANAGEMENT, 1997, 13 (04) : 251 - 257
  • [45] Effects of grazing on CO2, CH4, and N2O fluxes in three temperate steppe ecosystems
    Shi, Huiqiu
    Hou, Longyu
    Yang, Liuyi
    Wu, Dongxiu
    Zhang, Lihua
    Li, Linghao
    ECOSPHERE, 2017, 8 (04):
  • [46] The impact of ploughing intensively managed temperate grasslands on N2O, CH4 and CO2 fluxes
    Drewer, J.
    Anderson, M.
    Levy, P. E.
    Scholtes, B.
    Helfter, C.
    Parker, J.
    Rees, R. M.
    Skiba, U. M.
    PLANT AND SOIL, 2017, 411 (1-2) : 193 - 208
  • [47] Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands
    Jukka Alm
    Sanna Saarnio
    Hannu Nykänen
    Jouko Silvola
    Perttij Martikainen
    Biogeochemistry, 1999, 44 : 163 - 186
  • [48] Fluxes of CO2, CH4 and N2O from drained organic soils in deciduous forests
    von Arnold, K
    Nilsson, M
    Hånell, B
    Weslien, P
    Klemedtsson, L
    SOIL BIOLOGY & BIOCHEMISTRY, 2005, 37 (06): : 1059 - 1071
  • [49] Dynamic of CO2, CH4 and N2O in the Guadalquivir estuary
    Sanchez-Rodriguez, J.
    Sierra, A.
    Jimenez-Lopez, D.
    Ortega, T.
    Gomez-Parra, A.
    Forja, J.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 805
  • [50] Effect of water addition and nitrogen fertilization on the fluxes of CH4, CO2, NOx, and N2O following five years of elevated CO2 in the Colorado Shortgrass Steppe
    Mosier, AR
    Pendall, E
    Morgan, JA
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2003, 3 : 1703 - 1708