Parallelized 3-D CSEM Inversion With Secondary Field Formulation and Hexahedral Mesh

被引:29
|
作者
Long, Zhidan [1 ]
Cai, Hongzhu [1 ]
Hu, Xiangyun [1 ]
Li, Gang [2 ]
Shao, Ouyang [1 ]
机构
[1] China Univ Geosci, Inst Geophys & Geomat, Wuhan 430074, Peoples R China
[2] Zhejiang Univ, Dept Marine Sci, Hangzhou 310027, Zhejiang, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Computational modeling; Finite element analysis; Mathematical model; Numerical models; Solid modeling; Data models; Shape; Controlled-source electromagnetic (CSEM) inversion; finite element; parallelization; secondary field formulation; FINITE-ELEMENT; 3D INVERSION; ELECTROMAGNETIC DIFFUSION; SOLUTION STRATEGIES; MARINE CSEM; DECOMPOSITION;
D O I
10.1109/TGRS.2020.2976111
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Presently, the 3-D inversion technique has started playing a more important role in controlled-source electromagnetic (CSEM) data interpretation. With the development of hardware and computation algorithm, 3-D inversion technique has developed rapidly during the past decades. In this article, we present a newly developed 3-D parallelized inversion algorithm in the frequency domain with hexahedral discretization. Within the framework of this approach, we use the finite-element method (FEM) in the forward modeling and GaussNewton optimization technique in the inversion. We solve the forward modeling and adjoint problem efficiently with Math Kernel Library (MKL) Pardiso parallel direct solver. Considering the fact that the forward modeling and sensitivity calculation are frequency independent, we further parallelize the algorithm over frequency using Message Passing Interface (MPI) to speed up the modeling and inversion process. The sensitivity matrix is calculated explicitly, which enables us to estimate the optimized regularization parameter easily based on the spectral radius estimation. We proposed a new roughness operator for hexhedral discretization which works well for CSEM inversion problems. We applied the developed algorithm to several realistic CSEM models. The inversion results demonstrate the effectiveness and stability of our inversion scheme.
引用
收藏
页码:6812 / 6822
页数:11
相关论文
共 50 条
  • [31] A case history: 3-D gravity modeling using hexahedral element in Kinigi geothermal field, Rwanda
    Jean d’Amour Uwiduhaye
    Hideki Mizunaga
    Hakim Saibi
    Arabian Journal of Geosciences, 2019, 12
  • [32] A case history: 3-D gravity modeling using hexahedral element in Kinigi geothermal field, Rwanda
    Uwiduhaye, Jean d'Amour
    Mizunaga, Hideki
    Saibi, Hakim
    ARABIAN JOURNAL OF GEOSCIENCES, 2019, 12 (03)
  • [33] A Discrete 2-D Formulation for 3-D Field Problems With Continuous Symmetry
    Auchmann, Bernhard
    Flemisch, Bernd
    Kurz, Stefan
    IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 3508 - 3511
  • [34] The use of a semi-structured finite-element mesh in 3-D resistivity inversion
    Loke, M. H.
    Wilkinson, P. B.
    Kuras, O.
    Meldrum, P., I
    Rucker, D. F.
    GEOPHYSICAL PROSPECTING, 2022, 70 (09) : 1580 - 1601
  • [35] Mesh size effect on finite source inversion with 3-D finite-element modelling
    Kim, Minsu
    So, Byung-Dal
    Kim, SatByul
    Jo, Taehwan
    Chang, Sung-Joon
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2024, 237 (02) : 716 - 728
  • [36] 3-D Inversion of Semi-Airborne Transient Electromagnetic Data Based on Decoupled Mesh
    Hui, Zhejian
    Wang, Xuben
    Yin, Changchun
    Liu, Yunhe
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [37] 3-D inversion of magnetic data
    Li, YG
    Oldenburg, DW
    GEOPHYSICS, 1996, 61 (02) : 394 - 408
  • [38] A rigorous 3-D MT inversion
    Avdeev, D. B.
    Avdeeva, A. D.
    PIERS 2006 CAMBRIDGE: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, PROCEEDINGS, 2006, : 219 - +
  • [39] 3-D inversion of gravity data
    Li, YG
    Oldenburg, DW
    GEOPHYSICS, 1998, 63 (01) : 109 - 119
  • [40] 3-D Magnetic Unstructured Inversion
    Zuo, Boxin
    Hu, Xiangyun
    Wang, Lizhe
    Cai, Yi
    Kass, Mason Andrew
    Leao-Santos, Marcelo
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2021, 126 (11)