Control charts based on parameter depths

被引:6
|
作者
Cascos, Ignacio [1 ]
Lopez-Diaz, Miguel [2 ]
机构
[1] Univ Carlos III Madrid, Inst Financial Big Data, Dept Stat, UC3M BS, Av Univ 30, E-28911 Leganes, Madrid, Spain
[2] Univ Oviedo, Dept Estadist & IO & DM, Federico Garcia Lorca 18, E-33007 Oviedo, Spain
关键词
Depth-based rank; Parameter depth; Statistical process control; Zonoid depth; (mu; alpha)-depth; WEIGHTED STANDARD DEVIATIONS; SKEW-NORMAL-DISTRIBUTION; MULTIVARIATE; DISTRIBUTIONS; POPULATIONS; CONSISTENCY; BOOTSTRAP; NOTIONS; REGIONS;
D O I
10.1016/j.apm.2017.09.009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Control charts are designed to monitor on-going production processes by tracking subsequent samples of the production using some statistic of a quality characteristic. We propose to track the parameter depths of estimates of a parameter by means of depth (D) charts, or the associated depth-based ranks by means of r-charts. More precisely, given a general parameter (e.g. mean, standard deviation or pair given by mean and standard deviation) and some historical data of the production, the parameter depth of an estimate of the parameter on new samples of the production with regard to the historical data is computed. The process is considered to be out-of-control when the depth of the estimate of the parameter falls below some given threshold (control limit). Some control limits of specific D-charts are obtained under the assumption of normality of the quality characteristic. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:487 / 509
页数:23
相关论文
共 50 条
  • [21] Control Charts for Process Dispersion Parameter under Contaminated Normal Environments
    Ali, Amjid
    Mahmood, Tahir
    Nazir, Hafiz Zafar
    Sana, Iram
    Akhtar, Noureen
    Qamar, Sadia
    Iqbal, Muhammad
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2016, 32 (07) : 2481 - 2490
  • [22] Adaptive EWMA control charts with time-varying smoothing parameter
    Ugaz, Willy
    Sanchez, Ismael
    Alonso, Andres M.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2017, 93 (9-12): : 3847 - 3858
  • [23] Moving range EWMA control charts for monitoring the Weibull shape parameter
    Akhundjanov, Sherzod B.
    Pascual, Francis
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (09) : 1864 - 1882
  • [24] Adaptive EWMA control charts with time-varying smoothing parameter
    Willy Ugaz
    Ismael Sánchez
    Andrés M. Alonso
    The International Journal of Advanced Manufacturing Technology, 2017, 93 : 3847 - 3858
  • [25] Control charts for monitoring the median parameter of Birnbaum-Saunders distribution
    Bourguignon, Marcelo
    Ho, Linda Lee
    Fernandes, Fidel Henrique
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2020, 36 (04) : 1333 - 1363
  • [26] On Phase-I Monitoring of Process Location Parameter with Auxiliary Information-Based Median Control Charts
    Hussain, Shahid
    Mei, Sun
    Riaz, Muhammad
    Abbasi, Saddam Akber
    MATHEMATICS, 2020, 8 (05)
  • [27] Shewhart control charts for the scale parameter of a Weibull control variable with fixed and variable sampling intervals
    Ramalhoto, MF
    Morais, M
    JOURNAL OF APPLIED STATISTICS, 1999, 26 (01) : 129 - 160
  • [28] Optimal design of time-between-event control charts with parameter estimation
    Guo, Baocai
    Yang, Yufei
    Castagliola, Philippe
    QUALITY ENGINEERING, 2024,
  • [29] STATISTICAL CONTROL CHARTS BASED ON A GEOMETRIC DISTRIBUTION
    KAMINSKY, FC
    BENNEYAN, JC
    DAVIS, RD
    BURKE, RJ
    JOURNAL OF QUALITY TECHNOLOGY, 1992, 24 (02) : 63 - 69
  • [30] Multivariate control charts based on a projection approach
    Bodnar O.
    Schmid W.
    Allgemeines Statistisches Archiv, 2005, 89 (1): : 75 - 93