Semiclassical eigenvalue distribution of the Zakharov-Shabat eigenvalue problem

被引:60
|
作者
Bronski, JC
机构
[1] Institute for Math, and Its Applications, University of Minnesota, Minneapolis
来源
PHYSICA D | 1996年 / 97卷 / 04期
基金
美国国家科学基金会;
关键词
D O I
10.1016/0167-2789(95)00311-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the semi-classical limit of the non-self-adjoint Zakharov-Shabat eigenvalue problem. We conduct a series of careful numerical experiments which provide strong evidence that the number of eigenvalues scales like epsilon(-1), just as in the self-adjoint case, and that the eigenvalues appear to approach a limiting curve. One general choice of potential functions produces a Y-shaped spectrum. We give an asymptotic argument which predicts a critical value for the phase for which the straight line spectra bifurcates to produce the Y-shaped spectra. This asymptotic prediction agrees quite well with numerical experiments. The asymptotic argument also predicts a symmetry breaking in the eigenfunctions, which we are able to observe numerically. We also show that the number of eigenvalues living away from the real axis for a restricted class of potentials is bounded by c epsilon(-1), where c is an explicit constant. A complete theory of the shape of the eigenvalue curve and a general bound on the number of eigenvalues is still lacking.
引用
收藏
页码:376 / 397
页数:22
相关论文
共 50 条
  • [31] Integrability of the Zakharov-Shabat Systems by Quadrature
    Kazuyuki Yagasaki
    Communications in Mathematical Physics, 2023, 400 : 315 - 340
  • [32] Contour integrals for numerical computation of discrete eigenvalues in the Zakharov-Shabat problem
    Vasylchenkova, Anastasiia
    Prilepsky, Jaroslaw E.
    Turitsyn, Sergei K.
    OPTICS LETTERS, 2018, 43 (15) : 3690 - 3693
  • [34] Efficient numerical method for solving the direct Zakharov-Shabat scattering problem
    Frumin, Leonid L.
    Belai, Oleg V.
    Podivilov, Eugeny V.
    Shapiro, David A.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2015, 32 (02) : 290 - 296
  • [35] A Novel Sixth-Order Algorithm for the Direct Zakharov-Shabat Problem
    Medvedev, Sergey B.
    Vaseva, Irina A.
    Chekhovskoy, Igor S.
    Fedoruk, Mikhail P.
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2021,
  • [36] Gap estimates of the spectrum of the Zakharov-Shabat system
    Grebert, B
    Kappeler, T
    Mityagin, B
    APPLIED MATHEMATICS LETTERS, 1998, 11 (04) : 95 - 97
  • [37] Scattering data computation for the Zakharov-Shabat system
    L. Fermo
    C. van der Mee
    S. Seatzu
    Calcolo, 2016, 53 : 487 - 520
  • [38] On the dressing method for the generalised Zakharov-Shabat system
    Ivanov, R
    NUCLEAR PHYSICS B, 2004, 694 (03) : 509 - 524
  • [39] Soliton solutions and gauge equivalence for the problem of Zakharov-Shabat and its generalizations
    Vaklev, Y
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (03) : 1393 - 1413
  • [40] Scattering Operators for Matrix Zakharov-Shabat Systems
    Demontis, Francesco
    van der Mee, Cornelis
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 62 (04) : 517 - 540