Semiclassical eigenvalue distribution of the Zakharov-Shabat eigenvalue problem

被引:60
|
作者
Bronski, JC
机构
[1] Institute for Math, and Its Applications, University of Minnesota, Minneapolis
来源
PHYSICA D | 1996年 / 97卷 / 04期
基金
美国国家科学基金会;
关键词
D O I
10.1016/0167-2789(95)00311-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the semi-classical limit of the non-self-adjoint Zakharov-Shabat eigenvalue problem. We conduct a series of careful numerical experiments which provide strong evidence that the number of eigenvalues scales like epsilon(-1), just as in the self-adjoint case, and that the eigenvalues appear to approach a limiting curve. One general choice of potential functions produces a Y-shaped spectrum. We give an asymptotic argument which predicts a critical value for the phase for which the straight line spectra bifurcates to produce the Y-shaped spectra. This asymptotic prediction agrees quite well with numerical experiments. The asymptotic argument also predicts a symmetry breaking in the eigenfunctions, which we are able to observe numerically. We also show that the number of eigenvalues living away from the real axis for a restricted class of potentials is bounded by c epsilon(-1), where c is an explicit constant. A complete theory of the shape of the eigenvalue curve and a general bound on the number of eigenvalues is still lacking.
引用
收藏
页码:376 / 397
页数:22
相关论文
共 50 条
  • [1] Spectral instability of the semiclassical Zakharov-Shabat eigenvalue problem
    Bronski, JC
    PHYSICA D-NONLINEAR PHENOMENA, 2001, 152 (152-153) : 163 - 170
  • [2] On the Zakharov-Shabat eigenvalue problem
    Klaus, M
    Mathematical Studies in Nonlinear Wave Propagation, 2005, 379 : 21 - 45
  • [3] EIGENVALUE ASYMPTOTICS FOR ZAKHAROV-SHABAT SYSTEMS WITH LONG-RANGE POTENTIALS
    Klaus, Martin
    OPERATORS AND MATRICES, 2018, 12 (01): : 55 - 106
  • [4] Introducing phase jump tracking - a fast method for eigenvalue evaluation of the direct Zakharov-Shabat problem
    Chekhovskoy, Igor
    Medvedev, S. B.
    Vaseva, I. A.
    Sedov, E. V.
    Fedoruk, M. P.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 96
  • [5] A numerical study of the large-period limit of a Zakharov-Shabat eigenvalue problem with periodic potentials
    Olivier, C. P.
    Herbst, B. M.
    Molchan, M. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (25)
  • [6] EIGENVALUES OF THE ZAKHAROV-SHABAT EQUATIONS BY SEMICLASSICAL APPROXIMATION
    MCCANN, JF
    BANDRAUK, AD
    PHYSICS LETTERS A, 1990, 151 (09) : 509 - 514
  • [7] Some remarks on a WKB method for the nonselfadjoint Zakharov-Shabat eigenvalue problem with analytic potentials and fast phase
    Miller, PD
    PHYSICA D, 2001, 152 : 145 - 162
  • [9] THE LARGEST REAL EIGENVALUE IN THE REAL GINIBRE ENSEMBLE AND ITS RELATION TO THE ZAKHAROV-SHABAT SYSTEM
    Baik, Jinho
    Bothner, Thomas
    ANNALS OF APPLIED PROBABILITY, 2020, 30 (01): : 460 - 501
  • [10] Fast Eigenvalue Evaluation of the Direct Zakharov-Shabat Problem in Telecommunication Signals Using Adaptive Phase Jump Tracking
    Chekhovskoy, I. S.
    Medvedev, S. B.
    Vaseva, I. A.
    Sedov, E., V
    Fedoruk, M. P.
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2021,