DISCONTINUOUS GALERKIN METHODS FOR THE VLASOV-MAXWELL EQUATIONS

被引:49
|
作者
Cheng, Yingda [1 ]
Gamba, Irene M. [2 ,3 ]
Li, Fengyan [4 ]
Morrison, Philip J. [5 ,6 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[3] Univ Texas Austin, ICES, Austin, TX 78712 USA
[4] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
[5] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[6] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Vlasov-Maxwell system; discontinuous Galerkin methods; energy conservation; error estimates; Weibel instability; FINITE-ELEMENT-METHOD; MAGNETIC-FIELD GENERATION; SEMI-LAGRANGIAN METHOD; 2 SPACE DIMENSIONS; CONSERVATION-LAWS; WEIBEL INSTABILITY; PLASMA; SYSTEM; SCHEME; SIMULATION;
D O I
10.1137/130915091
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Discontinuous Galerkin methods are developed for solving the Vlasov-Maxwell system, methods that are designed to be systematically as accurate as one wants with provable conservation of mass and possibly total energy. Such properties in general are hard to achieve within other numerical method frameworks for simulating the Vlasov-Maxwell system. The proposed scheme employs discontinuous Galerkin discretizations for both the Vlasov and the Maxwell equations, resulting in a consistent description of the distribution function and electromagnetic fields. It is proven, up to some boundary effects, that charge is conserved and the total energy can be preserved with suitable choices of the numerical flux for the Maxwell equations and the underlying approximation spaces. Error estimates are established for several flux choices. The scheme is tested on the streaming Weibel instability: the order of accuracy and conservation properties of the proposed method are verified.
引用
收藏
页码:1017 / 1049
页数:33
相关论文
共 50 条
  • [21] Hamiltonian time integrators for Vlasov-Maxwell equations
    He, Yang
    Qin, Hong
    Sun, Yajuan
    Xiao, Jianyuan
    Zhang, Ruili
    Liu, Jian
    PHYSICS OF PLASMAS, 2015, 22 (12)
  • [22] Comment on "Hamiltonian splitting for the Vlasov-Maxwell equations"
    Qin, Hong
    He, Yang
    Zhang, Ruili
    Liu, Jian
    Xiao, Jianyuan
    Wang, Yulei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 297 : 721 - 723
  • [23] Nonlinear relativistic gyrokinetic Vlasov-Maxwell equations
    Brizard, AJ
    Chan, AA
    PHYSICS OF PLASMAS, 1999, 6 (12) : 4548 - 4558
  • [24] Solving Vlasov-Maxwell equations in singular geometries
    Assous, Franck
    Ciarlet, Patrick, Jr.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 79 (04) : 1078 - 1085
  • [25] ON THE STATIONARY SOLUTIONS FOR THE SYSTEM OF THE VLASOV-MAXWELL EQUATIONS
    RUDYKH, GA
    SIDOROV, NA
    SINITSYN, AV
    DOKLADY AKADEMII NAUK SSSR, 1988, 302 (03): : 594 - 597
  • [26] Geometric particle-in-cell methods for the Vlasov-Maxwell equations with spin effects
    Crouseilles, Nicolas
    Hervieux, Paul-Antoine
    Li, Yingzhe
    Manfredi, Giovanni
    Sun, Yajuan
    JOURNAL OF PLASMA PHYSICS, 2021, 87 (03)
  • [27] HERMITIAN STRUCTURE FOR THE LINEARIZED VLASOV-POISSON AND VLASOV-MAXWELL EQUATIONS
    LARSSON, J
    PHYSICAL REVIEW LETTERS, 1991, 66 (11) : 1466 - 1468
  • [28] A numerical scheme for the integration of the Vlasov-Maxwell system of equations
    Mangeney, A
    Califano, F
    Cavazzoni, C
    Travnicek, P
    JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 179 (02) : 495 - 538
  • [29] Variational principle for nonlinear gyrokinetic Vlasov-Maxwell equations
    Brizard, AJ
    PHYSICS OF PLASMAS, 2000, 7 (12) : 4816 - 4822
  • [30] A new asymptotic approximate model for the Vlasov-Maxwell equations
    Assous, F.
    Tsipis, F.
    ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, 2010, 1 (01): : 691 - 698