On priors with a Kullback-Leibler property

被引:16
|
作者
Walker, S [1 ]
Damien, P
Lenk, P
机构
[1] Univ Bath, Dept Math, Bath BA2 7AY, Avon, England
[2] Univ Texas, McCombs Sch Business, Austin, TX 78712 USA
[3] Univ Michigan, Sch Business, Ann Arbor, MI 48109 USA
关键词
Bayes factors decision theory; exchangeability; expected utility rule; Kullback-Leibler divergence;
D O I
10.1198/016214504000000386
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we highlight properties of Bayesian models in which the prior puts positive mass on all Kullback-Leibler neighborhoods of all densities. These properties are concerned with model choice via the Bayes factor, density estimation and the maximization of expected utility for decision problems. In four illustrations we focus on the Bayes factor and show that whatever models are being compared, the [log(Bayes factor)]/[sample size] converges to a non-random number which has a nice interpretation. A parametric versus semiparametric model comparison provides a fifth illustration.
引用
收藏
页码:404 / 408
页数:5
相关论文
共 50 条
  • [1] The Kullback-Leibler autodependogram
    Bagnato, L.
    De Capitani, L.
    Punzo, A.
    JOURNAL OF APPLIED STATISTICS, 2016, 43 (14) : 2574 - 2594
  • [2] THE KULLBACK-LEIBLER DISTANCE
    KULLBACK, S
    AMERICAN STATISTICIAN, 1987, 41 (04): : 340 - 340
  • [3] Kullback-Leibler Boosting
    Liu, C
    Shum, HY
    2003 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2003, : 587 - 594
  • [4] Matrix CFAR detectors based on symmetrized Kullback-Leibler and total Kullback-Leibler divergences
    Hua, Xiaoqiang
    Cheng, Yongqiang
    Wang, Hongqiang
    Qin, Yuliang
    Li, Yubo
    Zhang, Wenpeng
    DIGITAL SIGNAL PROCESSING, 2017, 69 : 106 - 116
  • [5] Chained Kullback-Leibler Divergences
    Pavlichin, Dmitri S.
    Weissman, Tsachy
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 580 - 584
  • [6] The Kullback-Leibler number and thermodynamics
    Nyengeri, H
    PHYSICA SCRIPTA, 2001, 64 (02): : 105 - 107
  • [7] The fractional Kullback-Leibler divergence
    Alexopoulos, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (07)
  • [8] BOUNDS FOR KULLBACK-LEIBLER DIVERGENCE
    Popescu, Pantelimon G.
    Dragomir, Sever S.
    Slusanschi, Emil I.
    Stanasila, Octavian N.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [9] On the Interventional Kullback-Leibler Divergence
    Wildberger, Jonas
    Guo, Siyuan
    Bhattacharyya, Arnab
    Schoelkopf, Bernhard
    CONFERENCE ON CAUSAL LEARNING AND REASONING, VOL 213, 2023, 213 : 328 - 349
  • [10] Kullback-Leibler Divergence Revisited
    Raiber, Fiana
    Kurland, Oren
    ICTIR'17: PROCEEDINGS OF THE 2017 ACM SIGIR INTERNATIONAL CONFERENCE THEORY OF INFORMATION RETRIEVAL, 2017, : 117 - 124