Exponential stability of nonlinear infinite-dimensional systems: Application to nonisothermal axial dispersion tubular reactors

被引:7
|
作者
Hastir, Anthony [1 ,2 ]
Winkin, Joseph J. [1 ,2 ]
Dochain, Denis [3 ]
机构
[1] Univ Namur, Dept Math, Rempart de la Vierge 8, B-5000 Namur, Belgium
[2] Univ Namur, Namur Inst Complex Syst naXys, Rempart de la Vierge 8, B-5000 Namur, Belgium
[3] Catholic Univ Louvain, Inst Informat & Commun Technol Elect & Appl Math, Ave Georges Lemaitre 4-6, B-1348 Louvain La Neuve, Belgium
关键词
Nonlinear distributed parameter systems; Frechet/Gateaux derivatives; Equilibrium profiles; Nonisothermal axial dispersion tubular reactor; Bistability; LINEARIZED STABILITY; DYNAMICAL ANALYSIS; EQUATIONS;
D O I
10.1016/j.automatica.2020.109201
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Exponential stability of equilibria of nonlinear distributed parameter systems is considered. A general framework is set with related assumptions. In particular it is shown how to get local exponential stability of an equilibrium profile for the corresponding nonlinear system based on stability results for the linearized one. For this purpose a weakened concept of Frechet differentiability is required for the nonlinear semigroup generated by the nonlinear model, with links to Al Jamal and Morris (2018). The theoretical results are applied to a nonisothermal axial dispersion tubular reactor model and are illustrated with numerical simulations. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条