Spectral-Fidelity Convolutional Neural Networks for Hyperspectral Pansharpening

被引:37
|
作者
He, Lin [1 ]
Zhu, Jiawei [1 ]
Li, Jun [2 ]
Meng, Deyu [3 ,4 ]
Chanussot, Jocelyn [5 ]
Plaza, Antonio J. [6 ]
机构
[1] South China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510640, Peoples R China
[2] Sun Yat Sen Univ, Guangdong Prov Key Lab Urbanizat & Geosimulat, Sch Geog & Planning, Guangzhou 510275, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[4] Xi An Jiao Tong Univ, Minist Educ, Key Lab Intelligent Networks & Network Secur, Xian 710049, Peoples R China
[5] Univ Grenoble Alpes, GIPSA Lab, Grenoble Inst Technol, CNRS, F-38000 Grenoble, France
[6] Univ Extremadura, Hyperspectral Comp Lab, Dept Technol Comp & Commun, Escuela Politecn, E-10071 Caceres, Spain
基金
中国国家自然科学基金;
关键词
Feature extraction; Spatial resolution; Image reconstruction; Hyperspectral imaging; Kernel; Convolutional neural networks (CNNs); hierarchical detail reconstruction; hyperspectral image; pansharpening; spectral-fidelity loss; FUSION TECHNIQUE; IMAGES; MODULATION; REGRESSION; SIGNAL; MS;
D O I
10.1109/JSTARS.2020.3025040
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hyperspectral (HS) pansharpening aims at fusing a low-resolution HS (LRHS) image with a panchromatic image to obtain a full-resolution HS image. Most of the existing HS pansharpening approaches are usually based on traditional multispectral pansharpening techniques, which are not especially tailored for two inherent challenges of the HS pansharpening, i.e., much wider spectral range gap between the two kinds of images and having to recover details in many continuous spectral bands simultaneously. In this article, we develop new spectral-fidelity convolutional neural networks (called HSpeNets) for HS pansharpening to keep the fidelity of a pansharpened image to its true spectra as much as possible. Our methods particularly focus on the decomposability of HS details, accordingly synthesizing these details progressively, and meanwhile introduce a spectral-fidelity loss. We give theoretical justifications and provide detailed experimental results, showing the superiorities of the proposed HSpeNets with regard to other state-of-the-art pansharpening approaches.
引用
收藏
页码:5898 / 5914
页数:17
相关论文
共 50 条
  • [21] Convolutional neural networks for hyperspectral image classification
    Yu, Shiqi
    Jia, Sen
    Xu, Chunyan
    NEUROCOMPUTING, 2017, 219 : 88 - 98
  • [22] Going Deeper with Densely Connected Convolutional Neural Networks for Multispectral Pansharpening
    Wang, Dong
    Li, Ying
    Ma, Li
    Bai, Zongwen
    Chan, Jonathan Cheung-Wai
    REMOTE SENSING, 2019, 11 (22)
  • [23] Hyperspectral Image Classification with Convolutional Neural Networks
    Slavkovikj, Viktor
    Verstockt, Steven
    De Neve, Wesley
    Van Hoecke, Sofie
    Van de Walle, Rik
    MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, : 1159 - 1162
  • [24] Detail Injection-Based Deep Convolutional Neural Networks for Pansharpening
    Deng, Liang-Jian
    Vivone, Gemine
    Jin, Cheng
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (08): : 6995 - 7010
  • [25] Spectral Representations for Convolutional Neural Networks
    Rippel, Oren
    Snoek, Jasper
    Adams, Ryan P.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [26] Two Spectral–Spatial Implicit Neural Representations for Arbitrary-Resolution Hyperspectral Pansharpening
    He, Lin
    Fang, Zhou
    Li, Jun
    Chanussot, Jocelyn
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 21
  • [27] Modified Convolutional Neural Networks Architecture for Hyperspectral Image Classification (Extra-Convolutional Neural Networks)
    Hamouda, Maissa
    Bouhlel, Med Salim
    IET IMAGE PROCESSING, 2021,
  • [28] Improved Convolutional Neural Networks for Hyperspectral Image Classification
    Kalita, Shashanka
    Biswas, Mantosh
    RECENT DEVELOPMENTS IN MACHINE LEARNING AND DATA ANALYTICS, 2019, 740 : 397 - 410
  • [29] Hyperspectral Image Classification using Convolutional Neural Networks
    Shambulinga, M.
    Sadashivappa, G.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (06) : 702 - 708
  • [30] Deformable Convolutional Neural Networks for Hyperspectral Image Classification
    Zhu, Jian
    Fang, Leyuan
    Ghamisi, Pedram
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (08) : 1254 - 1258