CONVERGENCE OF THE GAUSS-NEWTON METHOD FOR CONVEX COMPOSITE OPTIMIZATION UNDER A MAJORANT CONDITION

被引:23
|
作者
Ferreira, O. P. [1 ]
Goncalves, M. L. N. [1 ]
Oliveira, P. R. [2 ]
机构
[1] IME UFG, BR-74001970 Goiania, Go, Brazil
[2] Univ Fed Rio de Janeiro, COPPE Sistemas, BR-21945970 Rio De Janeiro, Brazil
关键词
convex composite optimization problem; Gauss-Newton methods; majorant condition; semilocal convergence;
D O I
10.1137/110841606
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under the hypothesis that an initial point is a quasi-regular point, we use a majorant condition to present a new semilocal convergence analysis of an extension of the Gauss-Newton method for solving convex composite optimization problems. In this analysis the conditions and proof of convergence are simplified by using a simple majorant condition to define regions where a Gauss-Newton sequence is well behaved.
引用
收藏
页码:1757 / 1783
页数:27
相关论文
共 50 条
  • [41] Performance enhancement of Gauss-Newton trust-region solver for distributed Gauss-Newton optimization method
    Gao, Guohua
    Jiang, Hao
    Vink, Jeroen C.
    van Hagen, Paul P. H.
    Wells, Terence J.
    COMPUTATIONAL GEOSCIENCES, 2020, 24 (02) : 837 - 852
  • [42] Convergence analysis of inexact Gauss-Newton
    Gongcheng Shuxue Xuebao/Chinese Journal of Engineering Mathematics, 1997, 14 (04): : 1 - 7
  • [43] On the complexity of extending the convergence domain of Newton's method under the weak majorant condition
    Argyros, Ioannis K.
    George, Santhosh
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (03): : 781 - 795
  • [44] ON THE SEMILOCAL CONVERGENCE OF THE GAUSS-NEWTON METHOD USING RECURRENT FUNCTIONS
    Argyros, Ioannis K.
    Hilout, Said
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2010, 17 (04): : 307 - 319
  • [45] Extended convergence of Gauss-Newton's method and uniqueness of the solution
    Argyros, Ioannis K.
    Cho, Yeol Je
    George, Santhosh
    CARPATHIAN JOURNAL OF MATHEMATICS, 2018, 34 (02) : 135 - 142
  • [46] ON THE CONVERGENCE OF INEXACT GAUSS-NEWTON METHOD FOR SOLVING SINGULAR EQUATIONS
    Argyros, Ioannis K.
    George, Santhosh
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2016,
  • [47] SHAPE OPTIMIZATION VIA A LEVELSET AND A GAUSS-NEWTON METHOD
    Fehrenbach, Jerome
    de Gournay, Friaric
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2019, 25
  • [48] A Convergence Analysis for Pose Graph Optimization via Gauss-Newton Methods
    Carlone, Luca
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 965 - 972
  • [49] CONVERGENCE ANALYSIS OF THE GENERAL GAUSS-NEWTON ALGORITHM
    SCHABACK, R
    NUMERISCHE MATHEMATIK, 1985, 46 (02) : 281 - 309
  • [50] Improving the convergence of combined Newton-Raphson and Gauss-Newton multilevel iteration method
    Honkala, M
    Karanko, V
    Roos, D
    2002 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL II, PROCEEDINGS, 2002, : 229 - 232