Conservation laws and reflection mappings with an application to multiclass mean value analysis for stochastic fluid queues

被引:13
|
作者
Konstantopoulos, T
Zazanis, M
DeVeciana, G
机构
[1] UNIV TEXAS,DEPT ELECT & COMP ENGN,AUSTIN,TX 78712
[2] UNIV MASSACHUSETTS,DEPT IND ENGN & OPERAT RES,AMHERST,MA 01003
基金
美国国家科学基金会;
关键词
fluid queues; reflection mapping; conservation laws; palm probabilities;
D O I
10.1016/S0304-4149(96)00103-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we derive an alternative representation for the reflection of a continuous, bounded variation process. Under stationarity assumptions we prove a continuous counterpart of Little's law of classical queueing theory. These results, together with formulas from Palm calculus, are used to explain the method for the derivation of the mean value of a buffer fed by a special type stochastic fluid arrival process.
引用
收藏
页码:139 / 146
页数:8
相关论文
共 47 条