Data Reduction Using Lossy Compression for Cosmology and Astrophysics Workflows

被引:0
|
作者
Pulido, Jesus [1 ,2 ]
Lukic, Zarija [3 ]
Thorman, Paul [4 ]
Zheng, Caixia [5 ]
Ahrens, James [2 ]
Hamann, Bernd [1 ]
机构
[1] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA
[2] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA
[3] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[4] Haverford Coll, 370 Lancaster Ave, Haverford, PA 19041 USA
[5] Northeast Normal Univ, 2555 Jingyue St, Changchun 130117, Peoples R China
关键词
D O I
10.1088/1742-6596/1290/1/012008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper concerns the use of compression methods applied to large scientific data. Specifically the paper addresses the effect of lossy compression on approximation error. Computer simulations, experiments and imaging technologies generate terabyte-scale datasets making necessary new approaches for compression coupled with data analysis. Lossless compression techniques compress data with no loss of information, but they generally do not produce a large-enough reduction when compared to lossy compression methods. Lossy multi-resolution compression techniques make it possible to compress large datasets significantly with small numerical error, preserving coherent features and statistical properties needed for analysis. Lossy data compression reduces I/O data transfer cost and makes it possible to store more data at higher temporal resolution. We present results obtained with lossy multi-resolution compression, with a focus on astrophysics datasets. Our results confirm that lossy data compression is capable of preserving data characteristics very well, even at extremely high degrees of compression.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Astronomical Data Reduction Workflows with Reflex
    Ballester, Pascal
    Bramich, Daniel
    Forchi, Vincenzo
    Freudling, Wolfram
    Garcia-Dabo, Cesar Enrique
    Gebbinck, Maurice Klein
    Modigliani, Andrea
    Moehler, Sabine
    Romaniello, Martino
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXIII, 2014, 485 : 11 - 14
  • [32] Learning Better Lossless Compression Using Lossy Compression
    Mentzer, Fabian
    Van Gool, Luc
    Tschannen, Michael
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 6637 - 6646
  • [33] Distributed Binary Detection With Lossy Data Compression
    Katz, Gil
    Piantanida, Pablo
    Debbah, Merouane
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (08) : 5207 - 5227
  • [34] Optimal algorithm for lossy vector data compression
    Kolesnikov, Alexander
    IMAGE ANALYSIS AND RECOGNITION, PROCEEDINGS, 2007, 4633 : 761 - 771
  • [35] Lossy Compression of Weak-Lensing Data
    Vanderveld, R. Ali
    Bernstein, Gary M.
    Stoughton, Chris
    Rhodes, Jason
    Massey, Richard
    Johnston, David
    Dobke, Benjamin M.
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2011, 123 (906) : 996 - 1003
  • [36] Lossy Data Compression for IoT Sensors: A Review
    Arias Correa, Juan David
    Roschildt Pinto, Alex Sandro
    Montez, Carlos
    INTERNET OF THINGS, 2022, 19
  • [37] Lossy Compression for Wireless Seismic Data Acquisition
    Rubin, Marc J.
    Wakin, Michael B.
    Camp, Tracy
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (01) : 236 - 252
  • [38] Lossy Compression of Quality Values in Sequencing Data
    Morales, Veronica Suaste
    Houghten, Sheridan
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (05) : 1958 - 1969
  • [39] A survey on lossy compression of DSC raw data
    Fischer, Gregor
    Kunz, Dietmar
    Koehler, Katja
    DIGITAL PHOTOGRAPHY IV, 2008, 6817
  • [40] Spectral Distortion in Lossy Compression of Hyperspectral Data
    Aiazzi, Bruno
    Alparone, Luciano
    Baronti, Stefano
    Lastri, Cinzia
    Selva, Andmassimo
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2012, 2012