BROKEN AND UNBROKEN: THE MILKY WAY AND M31 STELLAR HALOS

被引:151
|
作者
Deason, A. J. [1 ,2 ]
Belokurov, V. [2 ]
Evans, N. W. [2 ]
Johnston, K. V. [3 ]
机构
[1] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA
[2] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England
[3] Columbia Univ, Dept Astron, New York, NY 10027 USA
来源
ASTROPHYSICAL JOURNAL | 2013年 / 763卷 / 02期
关键词
galaxies: halos; Galaxy: halo; galaxies: kinematics and dynamics; Local Group; TRACING GALAXY FORMATION; OUTER DISK; SUBSTRUCTURE; ANDROMEDA; SAGITTARIUS; PHOTOMETRY; PROFILE; ORIGIN; STREAM; SPACE;
D O I
10.1088/0004-637X/763/2/113
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We use the Bullock & Johnston suite of simulations to study the density profiles of L*-type galaxy stellar halos. Observations of the Milky Way and M31 stellar halos show contrasting results: the Milky Way has a "broken" profile, where the density falls off more rapidly beyond similar to 25 kpc, while M31 has a smooth profile out to 100 kpc with no obvious break. Simulated stellar halos, built solely by the accretion of dwarf galaxies, also exhibit this behavior: some halos have breaks, while others do not. The presence or absence of a break in the stellar halo profile can be related to the accretion history of the galaxy. We find that a break radius is strongly related to the buildup of stars at apocenters. We relate these findings to observations, and find that the "break" in the Milky Way density profile is likely associated with a relatively early (similar to 6-9 Gyr ago) and massive accretion event. In contrast, the absence of a break in the M31 stellar halo profile suggests that its accreted satellites have a wide range of apocenters. Hence, it is likely that M31 has had a much more prolonged accretion history than the Milky Way.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Giant HVC's and the rotation curves of the Milky Way and M31
    Casuso, E.
    Beckman, J. E.
    ASTROPHYSICS AND SPACE SCIENCE, 2006, 306 (03) : 139 - 145
  • [12] GALACTIC MAGNETISM AND THE ROTATION CURVES OF M31 AND THE MILKY-WAY
    VALLEE, JP
    ASTROPHYSICAL JOURNAL, 1994, 437 (01): : 179 - 183
  • [13] Testing Yukawa cosmology at the Milky Way and M31 galactic scales
    D'Agostino, Rocco
    Jusufi, Kimet
    Capozziello, Salvatore
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (04):
  • [14] Giant HVC’s and the Rotation Curves of the Milky Way and M31
    E. Casuso
    J. E. Beckman
    Astrophysics and Space Science, 2006, 306 : 139 - 145
  • [15] Catalogue of model star clusters in the Milky Way and M31 galaxies
    Chen, Yingtian
    Gnedin, Oleg Y.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (02) : 3692 - 3708
  • [16] Testing Weyl-modified gravity on M31 and Milky Way
    Bilal, Muhammad
    Qadir, Asghar
    SIXTEENTH MARCEL GROSSMANN MEETING, 2023, : 2365 - 2367
  • [17] On the Convergence of the Milky Way and M31 Kinematics from Cosmological Simulations
    Forero-Romero, J. E.
    Sierra-Porta, D.
    ASTROPHYSICAL JOURNAL, 2022, 939 (01):
  • [18] Milky Way and M31 rotation curves: ΛCDM versus MOND
    Dai, De-Chang
    Starkman, Glenn
    Stojkovic, Dejan
    PHYSICAL REVIEW D, 2022, 105 (10)
  • [19] PAndAS IN THE MIST: THE STELLAR AND GASEOUS MASS WITHIN THE HALOS OF M31 AND M33
    Lewis, Geraint F.
    Braun, Robert
    McConnachie, Alan W.
    Irwin, Michael J.
    Ibata, Rodrigo A.
    Chapman, Scott C.
    Ferguson, Annette M. N.
    Martin, Nicolas F.
    Fardal, Mark
    Dubinski, John
    Widrow, Larry
    Mackey, A. Dougal
    Babul, Arif
    Tanvir, Nial R.
    Rich, Michael
    ASTROPHYSICAL JOURNAL, 2013, 763 (01):
  • [20] The chemical properties of milky way and M31 globular clusters. II. Stellar population model predictions
    Beasley, MA
    Brodie, JP
    Strader, J
    Forbes, DA
    Proctor, RN
    Barmby, P
    Huchra, JP
    ASTRONOMICAL JOURNAL, 2005, 129 (03): : 1412 - 1427