Hardy-Littlewood maximal operator on reflexive variable Lebesgue spaces over spaces of homogeneous type

被引:0
|
作者
Karlovich, Alexei [1 ]
机构
[1] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, Ctr Matemat & Aplicacoes, P-2829516 Quinta Da Torre, Caparica, Portugal
关键词
Hardy-Littlewood maximal operator; variable Lebesgue space; space of homogeneous type; dyadic cubes; PROPERTY;
D O I
10.4064/sm180816-16-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the Hardy-Littlewood maximal operator is bounded on a reflexive variable Lebesgue space L-p(.) over a space of homogeneous type (X, d, mu) if and only if it is bounded on its dual space L-p'(.), where 1/p(x) + 1/p' (x) = 1 for x is an element of X. This result extends the corresponding result of Lars Diening from the Euclidean setting of R-n to the setting of spaces (X, d, mu) of homogeneous type.
引用
收藏
页码:149 / 178
页数:30
相关论文
共 50 条