Model-Based Seizure Detection for Intracranial EEG Recordings

被引:34
|
作者
Yadav, R. [1 ]
Swamy, M. N. S. [1 ]
Agarwal, R. [1 ]
机构
[1] Concordia Univ, Dept Elect & Comp Engn, Ctr Signal Proc & Commun CENSIPCOM, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Automatic seizure detection; EEG; epilepsy; statistically optimal null filters (SONFs); EPILEPTIC SEIZURES; SCALP EEG; SYSTEM; SEGMENTATION; ALGORITHM; ONSET; CLASSIFICATION;
D O I
10.1109/TBME.2012.2188399
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper presents a novel model-based patient-specific method for automatic detection of seizures in the intracranial EEG recordings. The proposed method overcomes the complexities in the practical implementation of the patient-specific approach of seizure detection. The method builds a seizure model (set of basis functions) for a priori known seizure (the template seizure pattern), and uses the statistically optimal null filters as a building block for the detection of similar seizures. The process of modeling the template seizure is fully automatic. Overall, the detection method involves the segmentation of the template seizure pattern, rejection of the redundant and noisy segments, extraction of features from the segments to generate a set of models, selection of the best seizure model, and training of the classifier. The trained classifier is used to detect similar seizures in the remaining data. The resulting seizure detection method was evaluated on a total of 304 h of single-channel depth EEG recordings from 14 patients. The system performance is further compared to the Qu-Gotman patient-specific system using the same data. A significant improvement in the proposed system, in terms of specificity, is observed over the compared method.
引用
收藏
页码:1419 / 1428
页数:10
相关论文
共 50 条
  • [31] The detection of seizure vulnerable period from epidural EEG recordings of epilepsy rat
    Jia, WY
    Liu, X
    Gao, XR
    Guo, L
    Lei, Y
    Ku, YX
    Gao, SK
    2005 2ND INTERNATINOAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING, 2005, : 690 - 692
  • [32] The use of time-frequency distributions for epileptic seizure detection in EEG recordings
    Tzallas, Alexandros T.
    Tsipouras, Markos G.
    Fotiadis, Dimitrios I.
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 3 - +
  • [33] Multifractal Analysis and Relevance Vector Machine-Based Automatic Seizure Detection in Intracranial EEG
    Zhang, Yanli
    Zhou, Weidong
    Yuan, Shasha
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2015, 25 (06)
  • [34] Automatic seizure detection using diffusion distance and BLDA in intracranial EEG
    Yuan, Shasha
    Zhou, Weidong
    Yuan, Qi
    Zhang, Yanli
    Meng, Qingfang
    EPILEPSY & BEHAVIOR, 2014, 31 : 339 - 345
  • [35] Morphology-Based Automatic Seizure Detector for Intracerebral EEG Recordings
    Yadav, R.
    Shah, A. K.
    Loeb, J. A.
    Swamy, M. N. S.
    Agarwal, R.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (07) : 1871 - 1881
  • [36] A dataset of neonatal EEG recordings with seizure annotations
    Stevenson, N. J.
    Tapani, K.
    Lauronen, L.
    Vanhatalo, S.
    SCIENTIFIC DATA, 2019, 6 (1)
  • [37] Analysis of epileptic seizure predictions based on intracranial EEG records
    Carrera, Enrique V.
    Quinga, Francisco
    2018 IEEE COLOMBIAN CONFERENCE ON COMMUNICATIONS AND COMPUTING (COLCOM), 2018,
  • [38] A dataset of neonatal EEG recordings with seizure annotations
    N. J. Stevenson
    K. Tapani
    L. Lauronen
    S. Vanhatalo
    Scientific Data, 6
  • [39] Performance of a seizure warning algorithm based on the dynamics of intracranial EEG
    Mormann, Florian
    Elger, Christian E.
    Lehnertz, Klaus
    EPILEPSY RESEARCH, 2006, 71 (2-3) : 241 - 242
  • [40] Performance of a seizure warning algorithm based on the dynamics of intracranial EEG
    Chaovalitwongse, W
    Lasemidis, LD
    Pardalos, PM
    Carney, PR
    Shiau, DS
    Sackellares, JC
    EPILEPSY RESEARCH, 2005, 64 (03) : 93 - 113