Model-Based Seizure Detection for Intracranial EEG Recordings

被引:34
|
作者
Yadav, R. [1 ]
Swamy, M. N. S. [1 ]
Agarwal, R. [1 ]
机构
[1] Concordia Univ, Dept Elect & Comp Engn, Ctr Signal Proc & Commun CENSIPCOM, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Automatic seizure detection; EEG; epilepsy; statistically optimal null filters (SONFs); EPILEPTIC SEIZURES; SCALP EEG; SYSTEM; SEGMENTATION; ALGORITHM; ONSET; CLASSIFICATION;
D O I
10.1109/TBME.2012.2188399
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper presents a novel model-based patient-specific method for automatic detection of seizures in the intracranial EEG recordings. The proposed method overcomes the complexities in the practical implementation of the patient-specific approach of seizure detection. The method builds a seizure model (set of basis functions) for a priori known seizure (the template seizure pattern), and uses the statistically optimal null filters as a building block for the detection of similar seizures. The process of modeling the template seizure is fully automatic. Overall, the detection method involves the segmentation of the template seizure pattern, rejection of the redundant and noisy segments, extraction of features from the segments to generate a set of models, selection of the best seizure model, and training of the classifier. The trained classifier is used to detect similar seizures in the remaining data. The resulting seizure detection method was evaluated on a total of 304 h of single-channel depth EEG recordings from 14 patients. The system performance is further compared to the Qu-Gotman patient-specific system using the same data. A significant improvement in the proposed system, in terms of specificity, is observed over the compared method.
引用
收藏
页码:1419 / 1428
页数:10
相关论文
共 50 条
  • [1] A Novel Method for Seizure Detection In Intracranial Eeg Recordings
    Javed, Moonis
    Akhtar, Aly
    Ahmed, Izhar
    Faisal, Raghib
    2015 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (CICN), 2015, : 237 - 241
  • [2] Seizure detection of newborn EEG using a model-based approach
    Roessgen, M
    Zoubir, AM
    Boashash, B
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1998, 45 (06) : 673 - 685
  • [3] Epileptic Seizure Detection Based on Video and EEG Recordings
    Aghaei, Hoda
    Kiani, Mohammad Mandi
    Aghajan, Hamid
    2017 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS), 2017,
  • [4] Quantitative EEG of Intracranial Recordings for Detection of Seizure Onset and Localization Compared to Standard Intracranial Tracing
    Gangloff, Steven
    Urban-Popescu, Alexandra
    Bagic, Anto
    Zaher, Naoir
    NEUROLOGY, 2019, 92 (15)
  • [5] FEASIBILITY OF SEIZURE PREDICTION FROM INTRACRANIAL EEG RECORDINGS
    Henriksen, J.
    Kjaer, T.
    Thomsen, C.
    Madsen, R.
    Sorensen, H.
    EPILEPSIA, 2009, 50 : 73 - 73
  • [6] Architecture of a model for epileptic seizure detection and classification from EEG recordings
    Statsenko, Yauhen
    Babushkin, Vladimir
    Talako, Tatsiana
    King, Fransina
    Smetanina, Darya
    Meribout, Sarah
    Ismail, Fatima
    Gorkom, Klaus
    Gelovani, Juri
    Ljubisavljevic, Milos
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2023, 455
  • [7] Automated seizure detection accuracy for ambulatory EEG recordings
    Otarula, Karina A. Gonzalez
    Mikhaeil-Demo, Yara
    Bachman, Elizabeth M.
    Balaguera, Pedro
    Schuele, Stephan
    NEUROLOGY, 2019, 92 (14) : E1540 - E1546
  • [8] A hierarchical approach for online temporal lobe seizure detection in long-term intracranial EEG recordings
    Liang, Sheng-Fu
    Chen, Yi-Chun
    Wang, Yu-Lin
    Chen, Pin-Tzu
    Yang, Chia-Hsiang
    Chiueh, Herming
    JOURNAL OF NEURAL ENGINEERING, 2013, 10 (04)
  • [9] Evaluation of two seizure prediction methods based on long-term intracranial EEG recordings
    Feldwisch, H.
    Winterhalder, M.
    Schelter, B.
    Nawrath, J.
    Wohlmuth, J.
    Brandt, A.
    Timmer, J.
    Schulze-Bonhage, A.
    EPILEPSIA, 2006, 47 : 72 - 72
  • [10] A model-based objective evaluation of eye movement correction in EEG recordings
    Kierkels, JJM
    van Boxtel, GJM
    Vogten, LLM
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (02) : 246 - 253