A Riemann-Hilbert approach to Painleve IV

被引:3
|
作者
van der Put, Marius [1 ]
Top, Jaap [1 ]
机构
[1] Univ Groningen, Johann Bernoulli Inst, NL-9700 AK Groningen, Netherlands
关键词
Moduli space for linear connections; Irregular singularities; Stokes matrices; Monodromy spaces; Isomonodromic deformations; Painleve equations; ORDINARY DIFFERENTIAL-EQUATIONS; DEFORMATION; GEOMETRY; MODULI; PAIRS;
D O I
10.1080/14029251.2013.862442
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The methods of [vdP-Sa, vdP1, vdP2] are applied to the fourth Painleve equation. One obtains a Riemann-Hilbert correspondence between moduli spaces of rank two connections on P-1 and moduli spaces for the monodromy data. The moduli spaces for these connections are identified with Okamoto-Painleve varieties and the Painleve property follows. For an explicit computation of the full group of Backlund transformations, rank three connections on P-1 are introduced, inspired by the symmetric form for PIV, studied by M. Noumi and Y. Yamada.
引用
收藏
页码:165 / 177
页数:13
相关论文
共 50 条
  • [31] A Riemann-Hilbert approach for the modified short pulse equation
    Guo, Boling
    Liu, Nan
    APPLICABLE ANALYSIS, 2019, 98 (09) : 1646 - 1659
  • [32] Riemann-Hilbert approach to the elastodynamic equation: half plane
    Its, Alexander
    Its, Elizabeth
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (03)
  • [33] Global Asymptotics of Krawtchouk Polynomials – a Riemann-Hilbert Approach*
    Dan Dai
    Roderick Wong
    Chinese Annals of Mathematics, Series B, 2007, 28 : 1 - 34
  • [34] New gravitational solutions via a Riemann-Hilbert approach
    Cardoso, G. L.
    Serra, J. C.
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (03):
  • [35] New gravitational solutions via a Riemann-Hilbert approach
    G. L. Cardoso
    J. C. Serra
    Journal of High Energy Physics, 2018
  • [36] Global asymptotics of Krawtchouk polynomials - a Riemann-Hilbert approach
    Dai, Dan
    Wong, Roderick
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2007, 28 (01) : 1 - 34
  • [37] Riemann-Hilbert approach to gap probabilities for the Bessel process
    Girotti, Manuela
    PHYSICA D-NONLINEAR PHENOMENA, 2015, 295 : 103 - 121
  • [38] A Riemann—Hilbert approach to Painlevé IV
    Marius van der Put
    Jaap Top
    Journal of Nonlinear Mathematical Physics, 2013, 20 : 165 - 177
  • [39] RIEMANN-HILBERT PROBLEMS WITH CONSTRAINTS
    Bertrand, Florian
    Della Sala, Giuseppe
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (05) : 2123 - 2131
  • [40] Formulation of Riemann-Hilbert Problems
    UNIFIED APPROACH TO BOUNDARY VALUE PROBLEMS, 2008, 78 : 189 - 194